Satellite Motion Determination Using Image Processing

Nikolay Proshunin Keldysh Institute of Applied Mathematics

Content

- Brief overview of attitude sensors
- Attitude determination using a star tracker
- Relative motion determination
- Image processing in a laboratory environment
- Conclusions

Attitude sensors The most frequently used

□ Vector measurement sensors

- Magnetometer
- Sun sensor
- Infrared sensor
- Star tracker

Attitude sensors The most frequently used

Inertial measurement sensors

- Angular velocity sensor
- Accelerometers

Attitude sensors The most frequently used

Relative attitude determination in Formation Flight

- Image processing
- Radio antennas measurements
- Laser systems

Cargo satellite "Progress" docking to ISS

Star tracker

- Angular distances between observed stars are calculated.
- The observed stars recognition with star catalog is executed.
- The optical axis orientation and the rotation angle about this axis are determined.

Star recognition algorithms testing

Algorithms features to be defined:

- The center of star image computation method.
- The number of stars in catalog.
- The star brightness accounting.

Problems:

- Does not work under Sun exposure.
- The attitude determination accuracy depends on angular velocity.
- The first recognition can take a long time.

Star center calculation Star recognitions results

Relative motion determination in formation flight

Image processing assumptions:

- The camera is installed on board of the 1st satellite and observes the 2nd.
- The shape and the reflection properties of the 2nd satellite are known.

Process of relative position and attitude determination. Red stars are the initial ref. point position, green crosses are measured position, red ones are estimated by LSQ method.

KIAM experimental stand

Camera calibration

Intrinsic parameters

- Focal length
- Principle point offset
- Distortion coefficients
- Extrinsic parameters
 - Transition vector
 - Rotation matrix

Camera model

From triangles similarity: $x = f \frac{X}{Z}$ Taking pixel size into account:

$$f_x = s_x f \qquad f_y = s_y f$$

Considering principle point offset:

$$x = f_x \frac{X}{Z} + c_x \qquad y = f_y \frac{Y}{Z} + c_y$$

Pinhole camera model

Distortions

First terms of Taylor series:

$$x_{corr} = x \left(1 + k_1 r^2 + k_2 r^4 \right),$$

$$y_{corr} = y \left(1 + k_1 r^2 + k_2 r^4 \right).$$

No Distortion

Barrel Distortion

Pincushion Distortion

Extrinsic camera parameters

Coordinate systems transformations

Camera parameters determination

- A series of chessboard images is considered as input
- Matlab Calibration Toolbox is used for calibration
- Least squares method is used to calculate the parameters

Marks recognition

- Different objects differ in distance between the centers of circles
- Nested contours provide high recognition accuracy

Initial mark versions

Final version of a mark

Mark recognition algorithm

Kalman filter

Experiment 1: Rolling motion

- The disk was rolled along the side of the stand
- The rotation angle matched the calculations

Experiment 2: Motion along the border

Experiment 3: Free motion

In red – velocity as a finite difference

In blue – velocity obtained from Kalman filter

 $S_{\underline{n-1}}$

 \boldsymbol{s}_n

Conclusions

Image processing is a powerful method that is used for satellite motion determination, including relative motion.

□ Image processing steps:

- Calibrate camera
- Convert to binary image
- Find all contours
- Distinct required contours
- Use filtering

Thank you for your attention