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MAGNETORQUERS ATTITUDE CONTROL FOR DIFFERENTIAL 
AERODYNAMIC FORCE APPLICATION TO NANOSATELLITE 
FORMATION FLYING CONSTRUCTION AND MAINTENANCE 

Uliana Monakhova,* Danil Ivanov, † Dmitry Roldugin‡  

The paper considers a problem of satellites formation flying construction imme-

diately after their launch. During the separation from the launcher some error in 

the ejection velocity is inevitable. It results in a slightly different orbital period 

of the satellites, so they will gradually move apart along the orbit and the rela-

tive trajectories become unbounded. The differential drag-based control is con-

sidered. The attitude control of the satellite is implemented by magnetorquers. 

INTRODUCTION 

Nanosatellite formation flying is of a special interest for the scientific and commercial mis-

sions due to accesible possibility of the low-cost cluster launch as a piggy-back payload or using 

the launchers on the ISS. The multi satellite system is able to measure the spatial distribution of 

the near-Earth space parameters or to construct the robust remote sensing system. For the satellite 

formation flying on the Low-Earth-Orbit the most perspective control approach is to use the diffe-

rential aerodynamic forces. It does not require propellant, the aerodynamic force acting on the 

satellite depends on its attitude, so to achieve the desirable relative motion the attitude control 

system (ACS) is required onboard the satellite. The most precise ACS is based on the reaction 

wheels, however they are affected to the saturation problem and require sufficient power supply 

that could be a problem for the nano and femto-satellites. In that paper the application of the ACS 

with magnetorquers is considered to obtain attitude for the implementation of required aerody-

namic force. That type of the ACS is easier to use onboard of the nanosatellites, for attitude de-

termination the magnetometer measurements only is processed. 

The control approach based on the differential drag force was firstly proposed in 1980s by 

Leonard [1] under the assumption of a discrete change in the effective cross section of satellites 

flying in the group. He developed a control algorithm based on the proportional differential con-

troller. A large number of papers applied a big variety of the different control algorithms using 

differential drag: PID regulator [2], linear-quadratic regulator [3], Lyapunov-based control [4,5], 

sliding mode control [6], optimal control [7] etc. However, all the mentioned above papers does 

not address the problem of the achieving the required attitude relative to the incoming airflow, 

though it is very crucial aspect especially if the ACS is magnetic. 
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Magnetic control systems are widely used for satellite angular velocity damping and attitude 

stabilization. They are by far the cheapest and are among the most reliable, small and lightweight. 

The drawbacks are the worst accuracy and even underactuation. It is even possible to achieve 

three axis stabilization using the magnetorquers [8,9] [10]. Proper stabilization requires the real-

time determination of the attitude motion. It is obtained by processing the attitude sensors mea-

surements. For example, the three axis attitude control is available with the sole magnetometer 

and three magnetorquers for a CubeSat [10,11]. 

Due to the launch velocity errors the relative drifts is inevitable between the satellites, so the 

aerodynamic control is required to achieve bounded relative trajectories. The problem of the con-

struction of the formation flying using magnetorquers is studied in the paper. 

PROBLEM STATEMENT 

The problem of the satellite formation flying construction after their separation from the 

launcher is considered, i.e. the achievement of closed relative trajectories is required. Consider 

two nanosatellites launched in the low near-circular orbit. Each satellite is equipped with three 

orthogonal magnetorquers for attitude control and magnetometer for attitude determination. The 

relative motion is assumed to be known for both the satellite. This information can be obtained 

either via an inter-satellite link or using autonomous relative motion determination system (range 

finders, optical sensors, etc). 

At the initial time the satellites move in accordance with the specified initial conditions after 

deploying from the launcher. The satellites deployment is carried out using a certain launch sys-

tem (usually by special springs) with a certain execution error. In the absence of control it leads to 

a gradual increasing distances between the satellites. Due to the onboard magnetorquers the satel-

lites relative translational motion can be controlled by the aerodynamic drag force which depends 

on the attitude of satellites relative to the incoming airflow. In the paper the 3U CubeSats are con-

sidered. They are the most popular nanosatellites nowadays and they have a form-factor quite 

proper for aerodynamic control because the ratio of the maximum to the minimum cross-sectional 

area is 3. 

The main goal of the study is to investigate the possibility of the application of the three-axis 

attitude stabilization using magnetorquers to produce such a differential drag which leads the 

relative drift to zero. The possibility of formation flying construction with piecewise constant 

control depending on initial conditions is investigated. The effect of these parameters on the con-

vergence rate is considered. 

MOTION EQUATIONS 

Free Motion Equations 

Consider two satellites moving in close circular orbits. To describe the trajectories of satellites 

it is convenient to use the motion equations written in the relative reference frame. The general 

form of the equations of relative motion of any two satellites is rather complicated for analytical 

consideration, so at the initial stage of the study a simple motion model described by the Hill-

Klochessi-Wiltshire equations is considered [1, 2]. The model describes the relative motion of 

two arbitrarily chosen satellites that fly in the central gravitational field of the Earth. In this mod-

el, an orbital reference frame is used, its origin (reference point) moves along a circular orbit of 

radius 
0r  with an orbital angular velocity 3

0r  , where   is the gravitational parameter of 

the Earth. The axis Oz  is directed from the center of the Earth, the axis Oy  is directed along the 

normal to the orbit plane, the axis Ox  complements the triplet (Fig. 1). 
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Figure.1. The reference frame associated with the O  reference point,  

moving along a circular orbit 

 

Let 
1 1 1 1( , , )x y zr  and 

2 2 2 2( , , )x y zr  be the coordinates of the conditional first and second sa-

tellites in the reference frame. Then for the coordinates 
2 1 ( , , )x y z  r r r  of the relative posi-

tion vector of the satellites, one can write the following motion equations: 
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The solution of the system is: 
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where 
iС  are constants that depend on the initial condi-

tions
0 (0),x x 0 (0),y y 0 (0),z z 0 (0),x x   
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The term responsible for the relative drift: 
13С t . Thus, the relative trajectory of two satel-

lites is closed if and only if 
1 0C  . However, in practice such ideal initial conditions can not be 

specified, and in the case of perturbations and nonlinear effects, there is always a relative drift 

between the satellites. Therefore, to achieve the bounded relative trajectory the satellites must be 

controlled for the drift elimination. 

Controlled Motion Equations 

Consider the application of the aerodynamic drag force for the group control. Since the drag 

force is directed against the satellite velocity vector and the group moves along near circular orbit 

Earth 
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it is assumed that the drag force is aligned with axis . The model of aerodynamic drag force f  

acting on the satellite can be represented in the following form: 

2 2

0

1 1
sin ,

2 2
a af C V S C V S       

where 
aC  is the aerodynamic drag coefficient,   is the density of the atmosphere, V  is the ve-

locity of the incoming flow, S  is the difference between maximum and minimum value of the 

cross-sectional area of satellite, 
0S  is the minimum value of the cross-sectional area of satellite, 

[0; / 2]   is the angle between the direction of the incoming airflow and longitudinal axis of 

satellites that assumed to be axisymmetric. The satellites in the group are supposed to be identic-

al, so the values of the S , 
0S , 

aC  are the same for all the satellites. The velocity of the atmos-

phere due to Earth rotation is neglected and it is assumed that the velocity of the incoming flow 

for all the satellites is equal to the orbital velocity 0/V r . It is assumed that satellites are 

equipped with attitude control system, it allows them to change the angle   and thereby to con-

trol the value of the aerodynamic drag force. Ox  

The difference between aerodynamic drag forces acting on the 1-st and 2-nd taking into ac-

count that the second term is equal for all of the satellites is as follows: 

 2

2 1 2 1

1
sin sin .

2
af f f C V S         (1) 

According to the differential drag model the force value is limited and the maximum value is as 

follows: 

21
max

2
af C V S  . 

Consider a controlled motion equations of a swarm of satellites. Since the control is imple-

mented using differential drag force the acceleration vector 2 1 ( , , )x y zu u u  u u u  have a non-

zero component only along the axis Ox , i.e. 0y zu u  . Let /xu u f m  , where m  is the 

mass of the satellite. Then the relative motion equations for satellites are as follows: 
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Assume that for the defined time interval T  the value of the control u  is constant. It means 

that during T  the attitude of the satellites do not change. Then the solution is: 
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The differential aerodynamic drag force has no effect on the motion along Oy axis, it is defined 

only by the initial conditions after the launch. That is why planar motion of the satellites in Oxz  

plane will be considered.  

To eliminate the relative drift proportional to the constant 
1 ,C  it is necessary to achieve such 

an initial conditions that  

(0)
2 (0).

x
z


 


 (3) 

Assume that initially the equality is not satisfied. Let us find a constant control u  such that, at the 

time T  after the beginning of the controlled motion, the following desired equality for ( )x T  

and ( )z T  will be satisfied: 

( )
2 ( ).

x T
z T




  


 (4) 

Substitute (2) into (4) we derive the following constant control value 

1 (0)
2 (0) .

C x
u z

T T

 



   
   

   


 (5) 

So, in the case of two satellites the constant control (5) leads to a closed relative trajectory. 

However, in the case if calculated control u  is more than maximum value of the differential drag 

acceleration 
maxu  then one need to increase the time interval T  or to apply 

maxu  several time 

intervals T  until the 
1 0C   after the control application. 

Angular Motion Equations 

Rigid spacecraft angular motion is considered. The satellite is equipped with three mutually 

orthogonal magnetorquers and three axis magnetometer. Magnetorquers can produce any re-

stricted dipole moment. Disturbing torques include gravitational and unknown ones. The latter are 

represented by constant and/or arbitrary Gaussian values. Inertia tensor knowledge is also errone-

ous. 

Satellite attitude is represented using Euler angles , ,    (rotation sequence 2–3-1), direction 

cosines matrix A  and its elements ija  (used for analytical study) and quaternion 
0( , )q q  

(used for numerical simulation). Angular velocity may represent either absolute motion (ω  and 

its components 
i ) or relative motion with respect to orbital reference frame (Ω  and 

i ). Abso-

lute and relative velocities are related by 

orb ω Ω Aω   (6) 

where 
0(0, , 0)orb ω  is the orbital reference frame angular velocity. 

Euler equations for the satellite with arbitrary inertia tensor ( , , )diag A B CJ  are 

  Jω ω Jω M   (7) 

for absolute angular velocity and 

rel   JΩ Ω JΩ M M   (8) 
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where ( )rel orb orb orb orb      ωM JW Aω Ω JAω Aω J Ω Aω  for relative angular velocity. 

yW  is a skew-symmetric matrix for any y , 

3 2

3 1

2 1

0

0 .

0

y y

y y

y y

 
 

  
  

yW   (9) 

The torque may contain control part 
ctrlM  and disturbing part. The latter is divided into gravi-

tational and unknown one, .ctrl gr dist  M M M M  

Dynamical equations are supplemented with kinematic relations. Quaternion kinematics is  

0

0

1
( ),

2

1
.

2

T

q

q

 

 

Ωq Ω W q

q Ω




  (10) 

Euler angles are used for analytical analysis, in this case 

2 3

2 3

1 2 3

1
( cos sin ),

cos

sin cos ,

( cos sin ).

d

dt

d

dt

d
tg

dt


 




 


  

  

 

   

  (11) 

Control torque is 
ctrl  M m B  where m  is the dipole control moment of the satellite, B  is 

the geomagnetic induction vector in bound reference frame. Consider control torque based on the 

PD-controller 

ak k    m B Ω B S  (12) 

where  23 32 31 13 12 21, ,
T

a a a a a a   S . It provides necessary attitude [8,9,14]. Control parame-

ters have decisive influence on the algorithm performance. They are adjusted manually in the vi-

cinity of optimal ones obtained using Floquet theory [15]. 

Gravitational torque is 

2

0 3 33 ( ) ( )gr  Μ Ae J Ae   (13) 

where 
3 (0, 0, 1)e  is the satellite radius-vector in orbital frame. 

Unknown disturbing torque is modelled using three different approaches. Gaussian distribu-

tion of the order of 75 10 N m   allows modelling arbitrary disturbances with small effect on sa-

tellite motion since control torque is few orders greater. Constant disturbance on the level of 
710 N m   augmented with Gaussian one represents more notable disturbance. Constant torque 

may arise due to aerodynamics or solar pressure acting on a satellite with vast solar panels. The 

worst case is constant torque of 75 10 N m   value. 
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Inclined dipole model is mainly used to represent geomagnetic field. It takes into account 

three first terms in a Gauss decomposition [16] and allows quite accurate field representation 

paired with simple computational procedures. Geomagnetic induction vector is  

2

5
( 3( ) )e r

r


 B k kr r   

where k  is the Earth's dipole vector and r  is the satellite radius-vector. Direct dipole model (k  

is antiparallel to Earth rotation axis) is used for analytical approaches, geomagnetic induction 

vector in orbital frame is 

0

cos sin

cos

2sin sin

orb

u i

B i

u i

 
 

  
  

B   (14) 

where 6 3 2 1

0 3
, 7.812 10 ,e

eB km kg s A
r


         r  is the satellite radius vector magnitude, u  is 

the argument of latitude, i  is the orbit inclination. Geomagnetic induction vector measurements 

are modelled as 

,orb



   

 

B

B

B AB B η

B η




  (15) 

where B  are the magnetometer readings, 
orbB  is the modelled induction (inclined field is used in 

Kalman filter), B  is magnetometer bias, 
Bη  and 

ΔBη  are Gaussian magnetometer error and bias 

rate of change, each with zero mean. 

NUMERICAL STUDY 

Consider the application of the proposed control rules for the task of the nanosatellites forma-

tion flying construction after the launch. The scheme of the launch of the satellites is the same 

that used by PlanetLabs compan6 in 2017 for the launch of two 3U CubeSats from the launcher 

from ISS [17]. The photo of the launch is presented in Fig. 2. It is assumed that the satellites sepa-

rate from the bus-launcher in the Ox  axis direction one after another with the time interval t  

between the launches. The velocity of the ejection 
eV  is the same for all the CubeSats, however 

due to launch system inaccuracy the ejection velocity 
eV  is subjected to errors. So, the initial ve-

locity vector 
0V  in orbital reference frame is modelled as follows: 

0 ,

eV V

V

V







 
 


 
  

V  (16) 

where V  is ejection error, it is modelled as normally distributed random value with zero mean 

and covariance 2

V . 
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Figure. 2. The photo of the launch of the two Doves PlanetLabs’s 3U CubeSats  

from the ISS [17] 

All the parameters used for the simulation of the controlled motion of the swarm of the Cube-

Sats are presented in Table 1. The constant atmosphere density is chosen in accordance to average 

atmosphere density along the orbit with 340 km altitude according to the Russian GOST model of 

upper atmosphere [18]. 

Table 1. Parameters of simulation 

Launch parameters 

Time interval between the launches, t  10 s 

Ejection velocity, 
eV  0.5 m/s 

Ejection error deviation, 
V  0.015 m/s 

CubeSats parameters 

Mass of satellite, m  3 kg 

Difference between maximum and minimum value of the 

cross-sectional area, S  

0.02 m
2 

Aerodynamic drag coefficient, 
aC  2 

Inertia tensor, J  2 2(1.2, 1.1, 0.5) 10 kg mdiag    

Magnetorquers maximum dipole moment, 
maxm  0.3 2A m  

Magnetometer mean-square deviation, B
 300 nT 

Initial angular velocity, 
0ω  [ 1; 1; 1 ] deg/s 

Aerodynamic drag force parameters 

Constant atmosphere density,   1110 kg/m
3 

Orbit altitude, h  340 km 

Airflow velocity, / ( )EV R h   7.69 km/s 
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The whole scheme of the control loop is presented in Figure 1. First the initial conditions are 

defined for the integration of the relative translational motion equations (2) and angular motion 

equations (7) for both the satellites. Then using the current state vector of relative translational 

motion the relative drift is calculated and using (5) the required control value is obtained. This 

value of the required differential drag force can be achieved if the required attitude of both the 

satellites is implemented. Using the drag model (1) the required angles relative to the incoming 

airflow is calculated. After that the magnetorquer control is aimed to stabilize according to the 

required attitude. During stabilization the actual attitude is used for the actual aerodynamic force 

calculation and for relative motion equations integration. The update of the required control for 

relative drift elimination is calculated with a certain time interval. 

 

Figure 3. Scheme of the control loop 

Consider the example of the relative motion simulation after the launch. The free uncom-

trolled motion according to the initial conditions with ejection velocity errors is presented in Fig-

ure 4. Since the motion along the Oy axis is uncontrolled by the differential drag force, motion in 

the Oxz plane only is considered. As one can see in the Figure 4 the relative motion is un-

bounded, and the satellites are flying apart. Figure 5 demonstrates the controlled relative motion 

under the application of the proposed scheme. The trajectories become bounded in time and the 

relative drift converges to a zero as presented in Figure 6. Figure 7 shows the required angles 

relative to the incoming airflow and its actual values for two satellites. Initially the calculated 

control was more than maximum possible value that could be implemented by differential drag. 

That is why the required attitude so to align the longitudinal axis with velocity vector (i.e. 
1 0  ) 

for the first satellite and to make that axis perpendicular to the incoming airflow for the second 

satellite (
o

2 90  ). It took several hours to stabilize along the required axes with accuracy about 

several degrees. Then the calculated control become less then the maximum value, so to imple-

ment it another attitude angle was required. The accuracy of the realization of required angles was 

about 20 degrees, but nonetheless the relative drift converges to a zero after 6 hours. Figure 8 

demonstrates the values of the magnetic dipole moments of the magnetorquers during the consi-

dered example. 

Relative angular and transla-

tional motion simulation 

Eq. (2) and (7) 

Calculation of the required 

control for relative drift eli-

mination (5) 

Using differential drag model 

(1) the required attitude for 

both satellite calculation 

Application of the magnetor-

quer control (12) calculation 

for required attitude 

Initial  

conditions 

State vector 

Control  

value 

Required 

attitude 

Magnetorquers 

dipole moments 
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Figure 4. Free relative motion after the launch 

 

Figure 5. Controlled relative motion after the launch 
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Figure 6. The relative drift 

 

Figure 7. The required and actual angles relative to the incoming airflow for two satellites 

 

Figure 8. The magnetorquers control values for the second satellite 
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CONCLUSION 

The possibility of the magnetorquer attitude control application for formation flying contrac-

tion is demonstrated. Despite the low accuracy of the satellites stabilization relative to the incom-

ing airflow the relative drift converges to a zero and the relative trajectories become bounded. In 

the future work the influence of the disturbances caused by harmonic 
2J  and atmosphere density 

uncertainties will be investigated. Also the application of the magnetic control for the achieve-

ment of required relative trajectories are of special interest. 
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