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What is satellite formation flying? 

o It is space distributed system consisting of multiple 
elements flying in a short relative distances in orbit 
that can communicate, coordinate and interact in 
order to achieve a common goal 

o  Its main advantages: 

   – Concurrency between the satellites 

   – Tolerance for failure of individual systems  

   – Scalability and flexibility in design and 
      deployment of system 
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What is formation flying needed for? 
oEarth remote sensing 

using interferometric 
measurements 

oGravitational waves 
measurements 

oBuilding of the space 
stations in orbit 

oSolar activity precise 
measuremets 

oSpace debris removal 

oAnd so on… 

 

 

 

 

TanDEM-X mission 

LISA mission 

Grabbing the debris 
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Definitions for distributed space systems 
 • Constellation: similar 

trajectories without control 
for relative position; 
coordination from a control 
center 

• Formation: closed-loop 
control on-board in order to 
preserve topology in the 
group and to control 
relative distances 

• Swarm: a group of similar 
vehicles cooperating to 
achieve a joint goal without 
fixed positions; Each 
member determines and 
controls relative positions in 
relations to others 
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Main parameters of distributed SS 

• A number of satellites 

• A degree of autonomy 

• Communication links 
between satellites 

• Relative trajectory 
types 

 

 

 Autonomy in relative control 
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Communication between satellites 
• The communication is 

information exchange or just 
measuring of relative pose 

• There could be directed or 
mutual communication 

• Each satellite has limited 
communication area 

• If det(A)≠0, the formation is 
decentralized 

• If det(A)=0, the formation is 
of leader-follower type, 
communication is cycled 
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Natural formation motions 

Flock of birds School of fishes 

Swarm of bees Herd of animals 05.12.2017 RSSTW-2017 8/38 



Satellite formation flying features 
• A small number of satellites 

• Centralized control: 
o Mother-daughter relationship: mother knows the best for her 

children and command them 

o Leader-follower relationship: leader moves everywhere it wants, 
the followers pursue it 

• Communication with all of the group members 

• Motion along predefined trajectories 
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Earth 

On the first stage of control algorithms investigation Clohessy-
Wiltshire model is used: 

Solution is : 

Equations of relative motion:  
linear model, near circular orbit 
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13C t - Relative drift 
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Formation flying specific relative 
trajectories 
• Train formation 

• Relative circular orbit 

• Projected circular orbit 

• Docking trajectories 

•  And so on 

CanSat4&5 mission 

A-train formation flying 

KIKU-7 mission 
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Formation flying control actuations 
• On-board propulsion system 

 Cold gas thrusters 
 Plasma thruster 

• Fuelless alternative control 
concepts 
 Aerodynamic drag 
 Electromagnetic interaction 
 Solar pressure 
 … 

 

PRISMA mission 

Tango propulsion system 
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An example:  
tetrahedron formation maintenance 

   Problem statement: 

• Given four satellites on 
closed, possibly elliptical, 
orbits 

• Need to obtain a reference 
orbit in order that the 
corresponding tetrahedron 
maintains over time 

• Also provide a control 
algorithm using propulsion 
system for several satellites 
to neglect perturbations 

image from NASA, MMS mission 
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Reference orbit for circular orbits 

• For reference orbit search we 
use linearized HCW model, 
closed orbits estimation 

 

 

 

 

• Introduce the quality of the 
tetrahedron 
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• Volume conservation is the conservation of the size 

• Quality conservation is the conservation of the shape 
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Satellite swarm features 
• A large number of satellites 

• Decentralized control 

• Communication with limited 
number of group member 

• Motion along occasional 
trajectories: 
• Random but bounded relative 

trajectories 

 

 

 
Example of relative trajectories 

Launch of 88 3U CubeSats developed  
by PlanetLabs  
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Artificial potential control approach 

• Collision avoidance 

 

 

• Alignment 

 

 

• Attraction 
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Equations of motion 

M. Sabatini, G. B. Palmerini and P. Gasbarri. Control Laws for Defective 
Swarming Systems// Advances in the Astronautical Sciences, Second IAA 
DyCoss'2014, V. 153. p. 132-153. 
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Swarm consensus control 
• Convergence to a common 

orbital plane 
• The error function: 

 

 

• Attitude synchronization 
• Non-linear control law: 
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Thakur D., Hernandez S., Akella M.R. Spacecraft swarm finite-thrust cooperative 
control for common orbit convergence // J. Guid. Control. Dyn. 2015. Vol. 38, № 3. P. 
478–487. 

Zhou J., Hu Q., Friswell M.I. Decentralized Finite Time Attitude Synchronization Control of Satellite 

Formation Flying // J. Guid. Control. Dyn. 2013. Vol. 36, № 1. P. 185–195. 
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Virtual structure control approach 

• Imitation the satellite system by 
a solid structure model 

• Control law 

Point masses connected by a spring-
damper mesh 

Chen Q. et al. Virtual Spring-

Damper Mesh-Based Formation 

Control for Spacecraft Swarms in 

Potential Fields // J. Guid. Control. 

Dyn. 2015. Vol. 38, № 3. P. 539–

546. 
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Fuelless FF Control Concepts 
• Tethered systems 

• Aerodynamic drag 

• Electro-magnetic interaction 

• Solar pressure 

• Momentum exchange 
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Aerodynamic drug based control 

o Features: 
 Low Earth Orbit 
 Satellites with variable cross 

section area 
 

o Shortcomings: 
 Short lifetime 
 Reaction wheel saturation 

during attitude control 
 

  
JC2Sat Mission 
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LQR-based control algorithm 
oAerodynamic  force 

 

 

o Linear-quadratic regulator 
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Electro-magnetic interaction 
based control 
• Magnetic interaction 

 

 

• Lorenz force of charged satellite 

 

 

• Coulomb force interaction 

 

 

Youngquist R.C., Nurge M.A., Starr S.O. Alternating 

magnetic field forces for satellite formation flying // 

Acta Astronaut. Elsevier, 2013. Vol. 84. P. 197–205. 

Peck M.A. et al. Spacecrat Formation Flying Using 

Lorentz Forces // J. Br. Interplanet. Soc. 2007. Vol. 

60. P. 263–267. 

Schaub H. et al. Challenges and Prospects of 

Coulomb Spacecraft Formation Control of the 

Astronautical Sciences // J. Astronaut. Sci. 2004. Vol. 

52. P. 169–193. 
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Coulomb force based control algorithm 
o Features: 

• The charging device is required 

• Small relative distances 

• Charges are eliminating by 
plasma 

Plasma 
environment 

λd min, m λd max, m 

LEO 0.02 0.4 

GEO 142 1496 

Free space 7.4 24 

Coulomb force under λd =140 m 
Coulomb force under λd=1400 m 
J2 perturbation 
Solar pressure 
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e
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Solar radiation pressure based 
control 
• Solar sail with fixed orientation 

 

 

 

 

• Solar sail with variable reflection  

Smirnov G.V., Ovchinnikov M.Y., Guerman A.D. Use of 

solar radiation pressure to maintain a spatial satellite 

formation // Acta Astronaut. 2007. Vol. 61, № 7-8. P. 724–

728. 

Mori  O.  et  al.  First  Solar  Power  Sail  Demonstration  by  
IKAROS  //  Trans.  Japan  Soc.  Aeronaut.  Sp.  Sci.  Aerosp.  
Technol.  Japan.  2010.  Vol.  8,  №  ists27.  P.  To_4_25  – 
To_4_31. 
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Solar radiation pressure based 
control 
We consider: 

• Spherical satellites 

• Variable reflection on “pixel” 
surface 

• Nearcircular orbits 
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Numerical example of the SPR 
control 

Desired trajectory 
Without control 

Desired traj. 
Controlled traj. 

Relative trajectories  
 without control 

Relative trajectories  
 with control 
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The momentum exchange-based control 
• The momentum from lasers for 

repulsive force 
 Y. K. Bae. A contamination-free ultrahigh precision formation flying 

method for micro-, nano-, and pico-satellites with nanometer 
accuracy. In Space Technology and Applications International Forum- 
Staif 2006, volume 813, pages 1213–1223, 2006. 

• Continuous stream of mass 
travelling between the satellites 

 S. G. Tragesser. Static formations using momentum exchange between 
satellites. Journal of guidance, control, and dynamics, 32(4):1277 –
1286, 2009. 

• Liquid droplet streams exchange 
 T. Joslyn and A. Ketsdever. Constant momentum exchange between 

microspacecraft using liquid droplet thrusters. In 46th joint Propulsion 
Conference, volume 6966, pages 25–28, 2010. 
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Laboratory facilities for formation flying 
control algorithms testing 

SPHERES mock-up on board the ISS 

The Formation Control Testbed at the JPL 

Test facility in the Technion Univercity 
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Planar Air Bearing Test-Bench in KIAM 

Flexible booms 

Air intake tube 

Mock-ups 

Air table 

Docking system 

Camera 

Industrial fun 

Mark for motion determination 

Thrusters imitation 

Control 

 system 

 elements 

Flexible 

booms 

Test Bench COSMOS  
(COmplex for Satellites MOtion Simulation)  

The magnitude of 
linear acceleration 
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Conclusion 
• The formation flying of the satellites is a new 

paradigm in space systems 

• The fuelless control approaches are fitting small 
satellite restrictions, they are smart but challenging 

• We should allow for the distributed system to be 
autonomous and self-organizing 

• And may the fourth be with us 
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Thank you for your attention! 

Our research team in KIAM 

Our web-site: 
http://keldysh.ru/microsatellites/eng/ 
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