Remote Sensing Satellite Technology Workshop 2017

December 5, 2017, National Space Organization, Taiwan

Satellite formation flying control approaches and algorithms

Dr. Danil Ivanov

Senior Researcher, Associate Professor Keldysh Institute for Applied Mathematics, Moscow, Russia

Content

- Formation flying features
- Overview of control approaches
- Fuelless satellite formation flying control concepts
- Mission examples
- Laboratory simulations
- Conclusion

05.12.2017 RSSTW-2017 2/38

What is satellite formation flying?

- It is space distributed system consisting of multiple elements flying in a short relative distances in orbit that can communicate, coordinate and interact in order to achieve a common goal
- Its main advantages:
 - Concurrency between the satellites
 - Tolerance for failure of individual systems
 - Scalability and flexibility in design and deployment of system

05.12.2017 RSSTW-2017 3/38

What is formation flying needed for?

- Earth remote sensing using interferometric measurements
- Gravitational waves measurements
- Building of the space stations in orbit
- Solar activity precise measuremets
- Space debris removal
- ○And so on...

Definitions for distributed space systems

- Constellation: similar trajectories without control for relative position; coordination from a control center
- Formation: closed-loop control on-board in order to preserve topology in the group and to control relative distances
- Swarm: a group of similar vehicles cooperating to achieve a joint goal without fixed positions; Each member determines and controls relative positions in relations to others

Main parameters of distributed SS

- A number of satellites
- A degree of autonomy type
- Communication links between satellites
- Relative trajectory types

Autonomy in relative control

Communication between satellites

- The communication is information exchange or just measuring of relative pose
- There could be directed or mutual communication
- Each satellite has limited communication area
- If det(A)≠0, the formation is decentralized
- If det(A)=0, the formation is of leader-follower type, communication is cycled

Centralized

Decentralized

Natural formation motions

School of fishes

Swarm of bees

Flock of birds

Herd of animals

Satellite formation flying features

- A small number of satellites
- Centralized control:
 - Mother-daughter relationship: mother knows the best for her children and command them
 - Leader-follower relationship: leader moves everywhere it wants, the followers pursue it
- Communication with all of the group members
- Motion along predefined trajectories

05.12.2017 RSSTW-2017 9/38

Equations of relative motion: linear model, near circular orbit

On the first stage of control algorithms investigation Clohessy-Wiltshire model is used:

$$\begin{cases} \ddot{x} + 2\omega \dot{z} = 0\\ \ddot{y} + \omega^2 y = 0\\ \ddot{z} - 2\omega \dot{x} - 3\omega^2 z = 0 \end{cases}$$

Solution is:

$$\begin{cases} x = -3C_1\omega t + 2C_2\cos\omega t - 2C_3\sin\omega t + C_4 \\ y = C_5\sin\omega t + C_6\cos\omega t \\ z = 2C_1 + C_2\sin\omega t + C_3\cos\omega t \end{cases}$$

 $-3C_1\omega t$ - Relative drift

Scheme of motion

The relative drift

Formation flying specific relative trajectories

- Train formation
- Relative circular orbit
- Projected circular orbit
- Docking trajectories
- And so on

KIKU-7 mission

A-train formation flying

CanSat4&5 mission

05.12.2017 RSSTW-2017 11/38

Formation flying control actuations

- On-board propulsion system
 - Cold gas thrusters
 - Plasma thruster
- Fuelless alternative control concepts
 - Aerodynamic drag
 - Electromagnetic interaction
 - Solar pressure

05.12.2017 RSSTW-2017 12/38

An example: tetrahedron formation maintenance

Problem statement:

- Given four satellites on closed, possibly elliptical, orbits
- Need to obtain a reference orbit in order that the corresponding tetrahedron maintains over time
- Also provide a control algorithm using propulsion system for several satellites to neglect perturbations

image from NASA, MMS mission

Reference orbit for circular orbits

 For reference orbit search we use linearized HCW model, closed orbits estimation

$$\ddot{x} - 2n\dot{y} - 3n^2x = 0, \quad x_i = A_i \sin(nt + \varphi_i),$$

$$\ddot{y} + 2n\dot{x} = 0, \quad y_i = C_i + 2A_i \cos(nt + \varphi_i),$$

$$\ddot{z} + n^2z = 0 \quad z_i = B_i \sin(nt + \psi_i)$$

$$Q = 12 \frac{(3 |V|)^{2/3}}{r_{12}^2 + r_{13}^2 + r_{14}^2 + r_{23}^2 + r_{24}^2 + r_{34}^2} = 12 \frac{(3 |V|)^{2/3}}{L}$$

- Volume conservation is the conservation of the size
- Quality conservation is the conservation of the shape

05.12.2017 RSSTW-2017 14/38

Satellite swarm features

- A large number of satellites
- Decentralized control
- Communication with limited number of group member
- Motion along occasional trajectories:
 - Random but bounded relative trajectories

Launch of 88 3U CubeSats developed by PlanetLabs

Example of relative trajectories

05.12.2017 RSSTW-2017 15/38

Artificial potential control approach

Collision avoidance

$$U_{ij}^{rep} = -C_{rep}e^{-rac{d_{ij}}{R_{rep}}}$$

Alignment

$$\mathbf{d}_{i} = \sum_{j,j \neq i} C_{al} \left(\mathbf{v}_{ij} \cdot \mathbf{r}_{ij} \right) e^{-\frac{d_{ij}}{R_{al}}} \mathbf{r}_{ij}$$

Attraction

$$U_{ii}^{at} = -C_{at}e^{-\frac{d_{ij}}{R_{at}}}$$

Equations of motion

$$m_i \mathbf{r}_i = -\nabla_i U(\mathbf{r}_i) + \mathbf{d}_i$$

M. Sabatini, G. B. Palmerini and P. Gasbarri. Control Laws for Defective Swarming Systems // Advances in the Astronautical Sciences, Second IAA DyCoss'2014, V. 153. p. 132-153.

Swarm consensus control

- Convergence to a common orbital plane
 - The error function:

$$\xi_i = \sum_{i=1}^n a_{ij} (1 - \mathbf{n}_i^T \mathbf{n}_j)$$

Thakur D., Hernandez S., Akella M.R. Spacecraft swarm finite-thrust cooperative control for common orbit convergence // J. Guid. Control. Dyn. 2015. Vol. 38, № 3. P. 478-487.

- Attitude synchronization
 - Non-linear control law:

• Non-linear control law:
$$\tau_i = \boldsymbol{\omega}_i^{\times} \boldsymbol{J}_i \boldsymbol{\omega}_i + \boldsymbol{J}_i \left(-\boldsymbol{Q}_i^{-1} \dot{\boldsymbol{Q}}_i \boldsymbol{\omega}_i - \boldsymbol{Q}_i^{-1} k_1 \right)$$
 final attitude.
$$\times \left\{ (\boldsymbol{Q}_i \boldsymbol{\omega}_i)^p + k_2^p \left[\sum_{j \in N_i} a_{ij} (\boldsymbol{q}_i - \boldsymbol{q}_j) + b_i (\boldsymbol{q}_i - \boldsymbol{q}_d) \right] \right\}^{2/p-1} \right)^{0.6}$$

Zhou J., Hu Q., Friswell M.I. Decentralized Finite Time Attitude Synchronization Control of Satellite Formation Flying // J. Guid. Control. Dyn. 2013. Vol. 36, № 1. P. 185–195. 05.12.2017

RSSTW-2017 17/38

Virtual structure control approach

- Imitation the satellite system by a solid structure model
- Control law

$$\boldsymbol{u}_i = -\sum_{e_k \in E} k_s d_{ik} (\boldsymbol{p}_k - \boldsymbol{p}_k^d) - \sum_{e_k \in E} k_d d_{ik} \dot{\boldsymbol{p}}_k$$

Point masses connected by a spring-

Chen Q. et al. Virtual Spring-Damper Mesh-Based Formation Control for Spacecraft Swarms in Potential Fields // J. Guid. Control. Dyn. 2015. Vol. 38, № 3. P. 539– 546.

Fuelless FF Control Concepts

- Tethered systems
- Aerodynamic drag
- Electro-magnetic interaction
- Solar pressure
- Momentum exchange

Aerodynamic drug based control

o Features:

- Low Earth Orbit
- Satellites with variable cross section area

Shortcomings:

- Short lifetime
- Reaction wheel saturation during attitude control

JC2Sat Mission

LQR-based control algorithm

Aerodynamic force

$$\mathbf{f}_{i} = -\frac{1}{m} \rho V^{2} S\{(1-\varepsilon)(\mathbf{e}_{V}, \mathbf{n}_{i})\mathbf{e}_{V} + 2\varepsilon(\mathbf{e}_{V}, \mathbf{n}_{i})^{2} \mathbf{n}_{i} + (1-\varepsilon) \frac{\upsilon}{V}(\mathbf{e}_{V}, \mathbf{n}_{i})\mathbf{n}_{i}\}^{*},$$

 $\mathbf{n} = (\cos \alpha \cos \beta; \sin \beta; \sin \alpha \cos \beta).$ \circ Linear-quadratic regulator

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u,$$

Minimising cost function

$$J = \int_{\tau}^{\infty} (\mathbf{e}^T \mathbf{Q} \mathbf{e} + \mathbf{u}^T \mathbf{R} \mathbf{u}) dt,$$

Feedback control is

$$\mathbf{u} = -\mathbf{R}^{-1}\mathbf{b}^T\mathbf{Pe}$$
, where $\mathbf{e} = \mathbf{x} - \mathbf{x}_d$,

matrix P is the solution of Riccati equation

$$Q - PBR_{05,12,2017}^{-1}B^{T}P + PA + A^{T}P = 0.$$

Relative trajectories during the maneuver

Electro-magnetic interaction based control

Magnetic interaction

Youngquist R.C., Nurge M.A., Starr S.O. Alternating magnetic field forces for satellite formation flying // Acta Astronaut. Elsevier, 2013. Vol. 84. P. 197–205.

Lorenz force of charged satellite

Peck M.A. et al. Spacecrat Formation Flying Using Lorentz Forces // J. Br. Interplanet. Soc. 2007. Vol. 60. P. 263–267.

Coulomb force interaction

Schaub H. et al. Challenges and Prospects of Coulomb Spacecraft Formation Control of the Astronautical Sciences // J. Astronaut. Sci. 2004. Vol. 52. P. 169–193.

Deputy (Lorentz)

05.12.2017 RSSTW-2017

Coulomb force based control algorithm

o Features:

- The charging device is required
- Small relative distances
- Charges are eliminating by plasma

$$\mathbf{f}_{12} = k_c \, \frac{\mathbf{r}_{12}}{r_{12}^3} q_1 q_2 e^{-\frac{r_{12}}{\lambda_d}}$$

Plasma environment	λ _{d min,} m	λ _{d max,} m
LEO	0.02	0.4
GEO	142	1496
Free space	7.4	24

Solar radiation pressure based control

Solar sail with fixed orientation

Smirnov G.V., Ovchinnikov M.Y., Guerman A.D. Use of solar radiation pressure to maintain a spatial satellite formation // Acta Astronaut. 2007. Vol. 61, № 7-8. P. 724–728.

Solar sail with variable reflection

Mori O. et al. First Solar Power Sail Demonstration by IKAROS // Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Japan. 2010. Vol. 8, № ists27. P. To_4_25 − To 4 31.

Solar radiation pressure based control

We consider:

- Spherical satellites
- Variable reflection on "pixel" surface

25/38

liquid-crystal thin

Numerical example of the SPR control

Relative trajectories without control

Relative trajectories with control

05.12.2017 RSSTW-2017 26/38

The momentum exchange-based control

The momentum from lasers for repulsive force

Y. K. Bae. A contamination-free ultrahigh precision formation flying method for micro-, nano-, and pico-satellites with nanometer accuracy. In Space Technology and Applications International Forum-Staif 2006, volume 813, pages 1213–1223, 2006.

S. G. Tragesser. Static formations using momentum exchange between satellites. Journal of guidance, control, and dynamics, 32(4):1277 – 1286, 2009.

Liquid droplet streams exchange

T. Joslyn and A. Ketsdever. Constant momentum exchange between microspacecraft using liquid droplet thrusters. In 46th joint Propulsion Conference, volume 6966, pages 25–28, 2010.

05.12.2017 RSSTW-2017

Laboratory facilities for formation flying control algorithms testing

The Formation Control Testbed at the JPL

Test facility in the Technion Univercity

SPHERES mock-up on board the ISS

05.12.2017 RSSTW-2017 28/38

Planar Air Bearing Test-Bench in KIAM

Test Bench COSMOS (COmplex for Satellites MOtion Simulation)

The magnitude of linear acceleration

05.12.2017

RSSTW-2017

Conclusion

- The formation flying of the satellites is a new paradigm in space systems
- The fuelless control approaches are fitting small satellite restrictions, they are smart but challenging
- We should allow for the distributed system to be autonomous and self-organizing
- And may the fourth be with us

05.12.2017 RSSTW-2017 30/38

Thank you for your attention!

Our research team in KIAM

Our web-site:

http://keldysh.ru/microsatellites/eng/

05.12.2017 RSSTW-2017 31/33