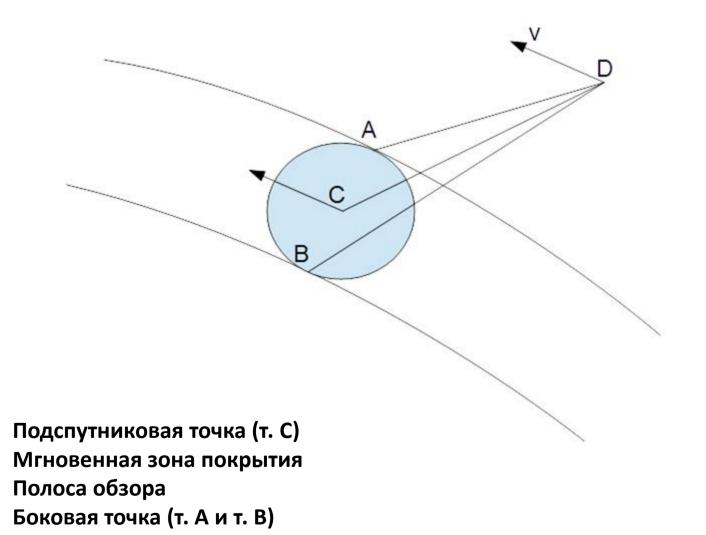


Выпускная квалификационная работа на тему:

«Разработка и программная реализация метода для расчета площади покрытия Земли спутником дистанционного зондирования»

студента 872 группы А.Е. Ильина

научный руководитель: д.ф.-м.н. С.А. Мирер научный консультант: к.ф.-м.н. С.С. Ткачёв

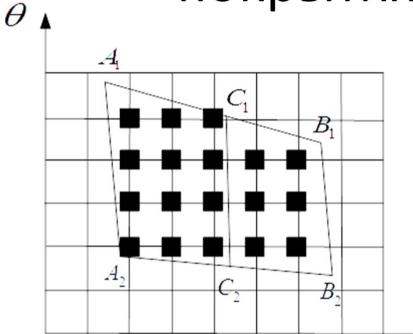

Цели работы

Создать комплекс для анализа эффективности работы спутниковых группировок с точки зрения размера площади покрытия и частоты съемки


Принятые допущения

- Спутник:
 - орбитальное движение:
 - Кеплерова орбита
 - Модель SGP4
 - угловое движение не учитывается, камера направлена на центр масс Земли
- Форма Земли:
 - шар
 - эллипсоид вращения (модель WGS 84)

Терминология

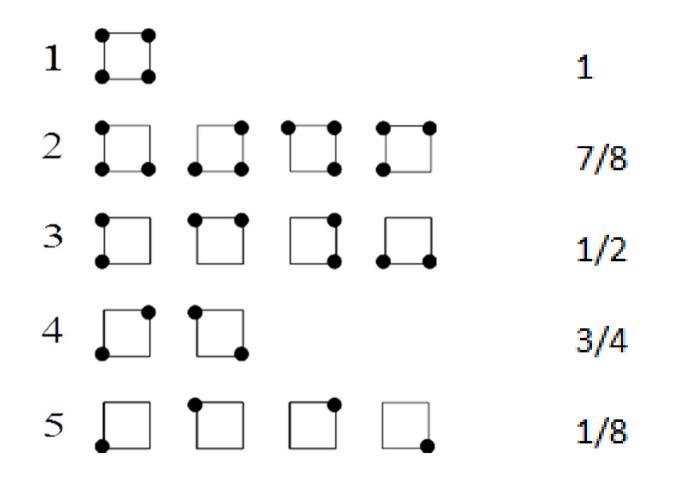


Нахождение координат боковых точек

Алгоритм счета площади покрытия спутника

 φ

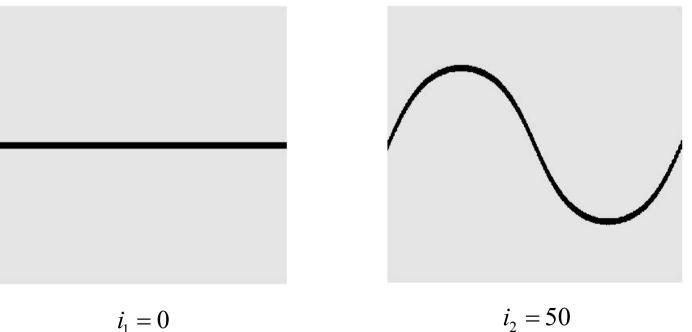
С₁С₂ – траектория подспутниковой точки А₁А₂, В₁В₂ – траектории боковых точек


Вектор **X** принадлежит выпуклой оболочке n векторов У_i, если выполнены условия

1) $\mathbf{X} = \sum_{i=1}^{n} q_i \mathbf{y}_i$

Полоса обзора, заметаемая спутником за время t = (t₂ - t₁)

2)
$$\sum_{i=1}^{n} q_i = 1$$
, где $0 \le q_i \le 1, \forall i$


Алгоритм счета площади покрытия спутника

Алгоритм счета площади покрытия спутника

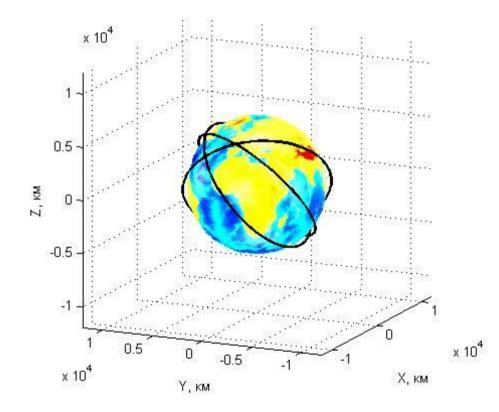
Рассматривается модельная задача:

- Земля имеет форму шара
- Земля не имеет угловой скорости ۲
- Параметры орбиты: $\omega = 0, \Omega = 0, e = 0, p = 6800$ ۲
- $S_{meop} = 1.9522 \cdot 10^7 \kappa M^2$

Алгоритм счета площади покрытия спутника


Мелкость разбиения сетки	метод счета площади Наклонение орбит	1	1, 2	1, 2, 3	1, 2, 3, 4, 5
N = 500	i = 0	19.306	19.306	20.912	20.912
N = 1000	i = 0	19.287	19.287	20.090	20.090
N = 500	i = 50	18.942	18.640	19.535	19.778
N = 1000	i = 50	18.406	19.257	19.703	19.824

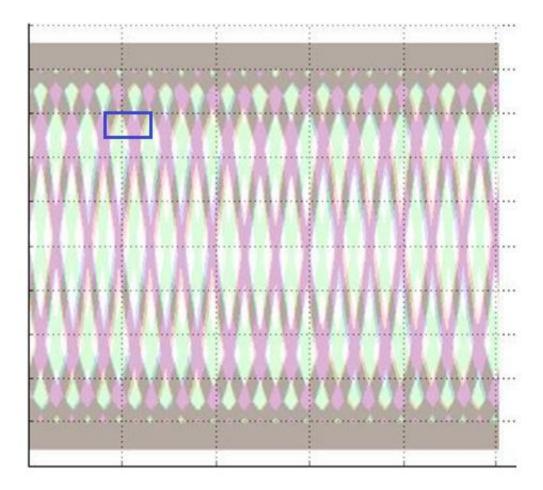
 $S_{meop} = 19.522 \cdot 10^6 \, \kappa M^2$


Определение частоты съемки заданной поверхности

- определить частоту съемки заданной поверхности
- определить долю сфотографированной поверхности в случае неполного заметания

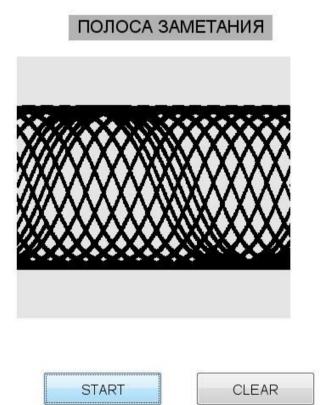
Алгоритм нахождения частоты съемки заданной поверхности

Пример расчета фотографирования заданной территории


- Поверхность ограничена:
 55°-65° с.ш. и 80°-120° в.д.
- Время расчета 24 часа
- Апертура камеры обзора равна 60°
- Параметры орбиты:

$$\Omega_1 = 36^\circ, \Omega_2 = 96^\circ, \Omega_3 = 156^\circ,$$

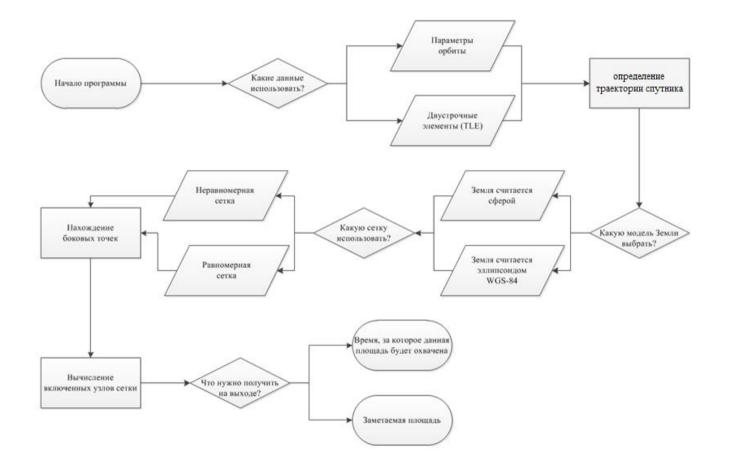
 $i = 51^\circ, e = 0,$
 $p = 6800 \ \kappa M$


Пример расчета фотографирования заданной территории

Количество спутников Размер Сетки	1	2	3
100	275.65	425.52	448.68
	0.7158	0.9824	0.9824
500	274.46	421.05	444.28
	0.6907	0.9912	0.9934
1000	274.53	421.02	444.20
	0.6913	0.9920	0.9938

Пример расчета фотографирования заданной территории

Интерфейс программы


р, км	angle, градусь
6800	60
е	Ν
0	500
і, градусы	step, сек
55	100
w, градусы	t_end, сек
0	100000
W, градусы	t_start, сек
0	0
выбор функции	t_per, сек
area_orbit_elements	0

Интерфейс программы

Ŵ		заметания
\mathbb{W}		
	START	CLEAR

фаил с координатами	
osition_test_1.txt	
файл со временем	ĺ
me_test_1.txt	
апертура камеры, градусь	əl
0	
мелкость разбиения	
00	
выбор функции	Ĩ
rea_tle_ellipsoid rea_tle_ellipsoid_2	*
	-

Блок-схема программы

Результаты

Создан комплекс для анализа эффективности работы спутниковых группировок с точки зрения размера площади покрытия и частоты съемки:

- Создана методика для расчета площади покрытия Земли спутником дистанционного зондирования
- Реализована визуализация траекторий спутника, подспутниковой и боковых точек
- Реализована программа расчета заметаемой спутником площади
- Реализована программа расчета времени, занимаемого на просмотр конкретной области на поверхности
- Реализован пользовательский интерфейс программы для расчета площади покрытия

Спасибо за внимание