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Satellite formation flying

A satellite formation consists of two of more

satellites flying in a specified geometry to achieve a
given mission

 more reliable
e cheaper

* more flexible

«AeroCube» formation

TanDEM-X
Earth Observation Satellites




Satellite formation flying

Landsat-7 being trailed by EO-1
covering the same area at different
times

PRIZMA mission:
satellites Tango and Mango



Methods of satellite formation
flying control

Thrusters
Electrostatic force
Lorentz force
Magnetorquers

Aerodynamic drag

Proba-3's pair of satellites

Mass exchange



Aerodynamic (AERO) drag control

« There are two satellites: a leader and a follower
- Both satellites are equipped with AERO flaps
« The relative trajectory changes by rotation of AERO flaps

Earth The follower
y 4

The leader Z



Relative Motion
HCW-equations

(X=-2iw+ f,

) y :_ya)z,
Z= 2Xw + 3707,

AERO drag force d
f =ipCVZS sinAa,
2m

Aa =arcsin(sing, —sina,),

a,o, =0.



Relative Motion

The Solution of HCW-equations, if f =0
(X(t) = —3c,mt + 2¢, cos wt — 2¢, sinwt + ¢,

-

y(t) = C Sin ot + c, cos i,

 Z(t) = 2c, + ¢, Sin wt + ¢, COS wt,

If c, =0 the trajectory is closed

Jc? + ¢ is proportional to the anplitude along x-axis
and z-axis

Jc& + ¢ is proportional to the anplitude along y-axis



Relative Motion

HCW-equations in state vector form for in-track and radial direction:
X =AX+ bu,

where
X | 0 1 0 0 0 |
X 0 O 0 2w B,
X= A: y b: )
Z 0O O 0 1 0
7 0 2w 30° 0 | 0 |
B = - %pCVZS, u=sina, —sing,.

AERO drag force has an affect only on in-track and radial direction.



Optimal Control

The state equation:
X =AX+ bu
The boundary conditions:
Ax(ty), to.x(t; )t ]=0
The aim of control is to minimize the cost functional

J = O[X(t,),t, X(t, ), t, ]+ j L(x(t),u(t)) dt

* Robust e Difficultly implemented
* Minimizing the energy * Discontinuous
lost

* Reaching the aimin
finite time



LQR

Control force

u = Ke,
where e =X —X,
minimize the following functional

J= j (" Qe +u"Ru )dt,
0

where Q,R — positive-definite matrix.
Feedback control
u=-R'B'Pe,
here matrix P is solution of the Riccati equation
Q-PBR'B'P+PA+A'P=0.



Sliding Mode Control (SMC)

e SMCis a nonlinear control method that Sliding surface

s=0

alters the dynamic of a system. N

\ Reaching mode

* Control signal forces the system to N

“slide” along a cross-section of the N
sliding surface, until the system reaches \ |
the required surface. \/

Sliding mode
iding mode "\

* Easily implemented Discontinuous

* Robust * Depending on sliding
* Reaching sliding mode in surface
finite time * Not minimizing the

energy lost



Sliding Mode Control

The Lyapunov fuction of the system is defined as:
V :182, where S=¢6 +Kge + K& +Kgze,.
2

If the system Is stable

V =SS <0, therefore lets assume S = —nsign(S), where n=const.
Taking into consideration

8 =[%—%,],X=—-22w+uU,

Feedback control is

u=-Ke —K,E —K, —nsign(S) +2zw+X,.



Numerical Simulation

LQR
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Collision avoidance

Collisions can arise from

= A foreign object

=  Other satellites in
formation

Consider a avoidance region,
in which satellite can not
enter

The problem is to find a
appropriate trajectory, which
be a tangent of the
avoidance region, using
AERO control

Iridium 33 and Kosmos-2251 collided in 2009



Optimal control

Assume that the a avoidance region is a schere (radius R)

X(T)>+z(T)*-R* =0,
X(T)X(T)+z(T)z(T) =0,
The contol also minimizes the functional '
T
J = j (U?(t))dt.
t,



The Pontryagin Maximum Principle

Hamiltonian of the system
H= —%uz +y X+, (U—-270)+y,2 +y,(2%Xw + 310°)

Solving a system of differential equations, the control can be founded

rﬁzO’
ou
de(t) :8ﬁ
dt OX;’
o _ oA
dt oy;’
X(ty) =X,
X(T) =X,
H(T)=0
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Conclusion

Algorithms of satellite formation flying control using aerodynamic drag
* LQR

* Sliding mode control

 The Pontryagin Maximum Principle



