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Satellite formation flying 

A satellite formation consists of two of more 
satellites flying in a specified geometry to achieve a 
given mission  

• more reliable  

• cheaper 

• more flexible   

TanDEM-X  

Earth Observation Satellites 

«AeroCube» formation 



Satellite formation flying 

PRIZMA mission: 

satellites Tango and Mango 

Landsat-7 being trailed by EO-1  

covering the same area at different 

times 



 Methods of satellite formation 
flying control 

 • Thrusters 

 

• Electrostatic force 

 

• Lorentz force 

 

• Magnetorquers 

 

• Aerodynamic drag 

 

• Mass exchange 
Proba-3's pair of satellites 



Aerodynamic (AERO) drag control 

The leader 

The follower 

 There are two satellites: a leader and a follower

 Both satellites are equipped with AERO flaps

 The relative trajectory changes by rotation of AERO flaps
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Relative Motion 
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HCW-equations in state vector form for in-track and radial direction
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Optimal Control 
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The state equation: 

     A

The  boundary conditions: 

    [ ( ), , ( ), ]=0

The aim of control is to minimize the cost functional
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+ 
• Robust 
• Minimizing the energy 

lost 
• Reaching the aim in 

finite time 
 

 

- 
• Difficultly implemented 
• Discontinuous 

 
 



LQR 
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where  

minimize  the following functional

= ( Q  + R  ) ,

where  Q,R  positive-definite matrix.

Feedback control 

  

Control force

    

  

  R B P ,

here  matrix P is solution of the Riccati 
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Sliding Mode Control (SMC) 

• SMC is a nonlinear  control method that 
alters the dynamic of a system. 

 
• Control signal forces the system to 

“slide” along a cross-section of the  
sliding surface, until the system reaches 
the required surface. 

 

+ 
• Easily implemented 
• Robust 
• Reaching sliding mode in 

finite time 
 
 

 

- 
• Discontinuous 
• Depending on sliding 

surface 
• Not minimizing the 

energy lost 



Sliding Mode Control 
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The Lyapunov fuction of the system is defined as:
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If  the system is stable 

 0,  therefore lets assume sign( ),  where n=const.
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Numerical Simulation 
LQR  



Numerical Simulation 
Sliding Mode Control  



Collision avoidance 

  Iridium 33 and Kosmos-2251 collided in 2009 

Collisions can arise from  
 A foreign object  
 Other satellites in 

formation 
 

Consider a avoidance region,  
in which satellite can not 
enter 
 
The problem is to find a 
appropriate trajectory, which 
be a tangent of the 
avoidance region, using 
AERO control 



Optimal control 
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The Pontryagin Maximum Principle 
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The Pontryagin Maximum Principle 



Conclusion 

 
Algorithms of satellite formation flying control using aerodynamic drag 

• LQR 

• Sliding mode control 

• The Pontryagin Maximum Principle  


