

The Small Satellites Systems & Services Symposium (4S) 28 May-01 June 2018, Sorrento, Italy

Improved Design and Deployment Analysis for a HEO Tetrahedral Formation with Passive Deputy Nanosatellites

Michael Koptev

Sergey Trofimov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Contents

I. Problem Statement

II. Optimization of the orbits

III. Formation deployment analysis

IV. Conclusion

Introduction

Credit: NASA's Goddard Space Flight Center

- Small satellites able to perform complex missions
- NASA Magnetospheric Multiscale mission (MMS)
- Tetrahedral formation on HEO
- Maneuvers used to prevent drift
- Each spacecraft weighted 1360 kg

Reference orbit

- Highly Elliptical Orbit
- $R_{\alpha} = 200000 \text{ km}$
- $R_{\pi} = 2000 \text{ km}$
- $i = 51.6^{\circ}$, start from Baikonur
- $\Omega = \omega = 0^{\circ}$
- Region of Interest: $|\vec{r}| > 15R_E$
- Perturbations: J2, Lunisolar

Red - Open Field Lines Black - Desired Phase 1 and Phase 2 Orbits

Formation quality factor

4S Symposium, 28 May-01 June 2018, Sorrento, Italy

5 / 19

Problem statement

- Find optimal orbits for each of the four spacecraft near the reference orbit to maximize the number of orbital revolutions with acceptable formation quality ($Q_{int} > 0.7$ in RoI).
- Examine different options of formation satellites deployment in the orbits found.

Optimization Problem

- The goal is to optimize the orbits of four satellites in the reference orbit vicinity
- Objective function:

$$\overline{Q}_{int}(x) = \frac{1}{N_{rev}} \sum_{i=1}^{N_{rev}} \hat{Q}^i_{int}(x) \longrightarrow max$$

- Unknown vector x: 6 orbital parameters for each of the four deputy satellites (24 variables in total)
- N_{rev} number of revolutions
- \hat{Q}_{int}^i modified formation quality factor on *i*-th revolution

Supercomputer Optimization

- Generalized Island Model from *pagmo* C++ library was used
- Developed by ESA to solve optimization problems in parallel
- Different optimization algorithms work on different islands (i.e. different CPUs)
- Islands asynchronously exchange information about best candidates to achieve better solutions
- The K60 supercomputer made it possible to operate with 361 islands

Island topology used in the optimization

Supercomputer Optimization

- Benchmark problem was developed to choose algorithms
- Algorithms on the ring islands:
 - Differential Evolution (DE)
 - Covariance Matrix Adaptation Evolution Strategy (CMAES)
 - Particle Swarm Optimization (PSO)
 - Sequential Quadratic

Programming (SQP)

- Central Island:
 - Subplex Method

Island topology used in the optimization

Start date selection analysis (1)

- Overall mission lifetime may depend heavily on the mission start date
- Same orbits should be propagated with various initial dates
- Such orbits were obtained by optimization in two-body problem

Start date selection analysis (2)

4S Symposium, 28 May-01 June 2018, Sorrento, Italy

10 / 19

Start date selection analysis (3)

4S Symposium, 28 May-01 June 2018, Sorrento, Italy

Optimization results

Evolution of Q_{int} with the optimized orbits

Tetrahedron on Rol of 40-th revolution

^{12 / 19}

Orbital deployment

- Three deputy nanosatellites can be detached from the chief microsatellite
- The chief microsatellite has to be placed into the corresponding orbit by the launch vehicle
- Overall mission lifetime depends heavily on the deployment errors

Mission duration (in days) for different initial orbit perturbations

^{13 / 19}

Deployment by means of standard spring pushers (1)

- Deployment happens within the three revolutions before the science phase of the mission begins
- Each revolution is reserved for the separation of one deputy satellite
- The chief satellite corrects its orbit between the separations
- Separation impulses are limited to 2 m/s and affects both
 Deputy and the Chief inversely proportionally to their masses
- Chief mass equals to 30 kg, Deputy mass is 5 kg

Deployment by means of standard spring pushers (1)

- 30-dimensional optimization problem:
 - six elements for initial Chief orbit
 - three Chief correction impulses
 - three separation impulses
 - each impulse described by three velocity components and its execution time
- The sequential quadratic programming method has been used

Deployment process

^{15 / 19}

Deployment process

^{15 / 19}

Deployment by means of standard spring pushers (2)

- Separation impulses found have magnitude up to 2 m/s
- Spring pushers are the source of large errors, up to 30% of impulse magnitude
- Typical errors in spring pusher impulses – 20% in magnitude and 5 deg in direction – cause a formation to degrade in less than a month

Mission duration (in days) dependency on the spring pusher errors

Deployment with low-velocity spring pushers

- Usage of low-velocity (5 cm/s) spring pushers is suggested to achieve better mission lifetime
- Separation impulses errors were fixed at 20% in magnitude and 10 deg in direction
- To maintain a mission for three months, chief accuracy of 0.8 km in position and 1.6 cm/s in velocity is required

Mission duration (in days) dependency on the chief navigation accuracy

^{17 / 19}

Conclusions

- For the formation satellites, such orbits exist that tetrahedron quality is acceptable for 83 revolutions (approx. 340 days) of purely ballistic motion
- To solve the optimization problem in a parallel way, the generalized island model was launched on the K-60 supercomputer
- Standard spring pushers with an impulse up to 2 m/s have errors up to 30%, which leads to formation degradation in less than a month
- To keep the formation for 3 months, low-velocity separation is needed, with chief spacecraft navigation errors no worse than 0.8 km and 1.6 cm/s

Acknowledgements

This research was supported by the Russian Science Foundation grant 17-71-10242.

Thanks for your attention!