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Abstract 

Currently small satellites are very popular and valuable as a technology demonstration and educational missions, 

delivering new technologies and ideas into space as fast as possible. Small satellites missions may require mediocre 

accuracy, therefore active three-axis magnetic control system is well suited for the considered problem. However, the 

magnetic torque direction is restricted – it cannot be applied along the geomagnetic induction vector. This hinders local 

capability of the disturbance rejection. However, the induction vector changes its direction during the satellite motion 

along the orbit. The uncontrollable direction changes and all directions become available with time. This leads to 

general controllability of the attitude stabilization problem. The paper proposes specific control construction 

procedure. A cost function is suggested that ensures the calculated control torque direction close to the plane orthogonal 

to the geomagnetic induction vector. Since the cost function is not suitable for classical gradient optimization methods, 

non-gradient biologically inspired global optimization method – particle swarm optimization (PSO) – is utilized in the 

paper. First, PSO is used to construct an optimal magnetically controllable attitude trajectory. The control torque 

projection onto the geomagnetic induction vector is minimized. Second, the constructed torque is implemented using 

magnetorquers. Simulation also considers different disturbance factors. The resulting motion satisfies the given 

constraints and initial conditions. Overall, PSO method is used to construct a controllable trajectory, which is 

implemented with a magnetic attitude control system with a given accuracy. 

Keywords: three-axis magnetic control, attitude control, particle swarm optimization, reference motion 

 

1. Introduction 

Small spacecraft (SC) are widely applicable today. 

They can be used either alone or in a group flight, which 

allows them to solve a large range of tasks. Small SC are 

usually made simple to keep cost down and simplify 

software development, while maintaining high reliability. 

Therefore, a magnetic attitude control system is often 

used, since it requires almost no energy consumption, and 

is also easy to manufacture. However, the control torque 

magn magn M m B  cannot be applied along the 

geomagnetic induction vector .magnB  The direction of 

vector magnB changes during the satellite motion along 

the orbit and all directions become available with time. 

The system is generally controllable [1,2]. 

The problem of providing SC stabilization using only 

three-axis magnetic attitude control system proposed in 

[3,4] is widely considered now. The survey [5] describes 

in detail a large number of works on this topic. It is shown 

that the magnetic attitude control system is applicable not 

only in the simplest case (orbital stabilization, e.g.), but 

also in more complex modes. It is possible to obtain an 

accuracy of 8-12 degrees. In the paper [6], it is proposed 

to construct a control using the PD-controller and the 

Floquet stability theory approach for choosing the 

optimal control gains. The resulting accuracy is about 10

degrees for this case. The paper [7] also discusses the 

problem of choosing optimal control coefficients. The 

method used in [6] is compared with the selection of 

control gains using the particle swarm optimization 

(PSO) method [8–10]. Stabilization accuracy in the case 

of simulation in an extended motion model (including a 

random disturbing torque) is 3 degrees. In addition, the 

work [11] describes the construction of 3-axis magnetic 

control strategy and corresponding flight tests. This is 

one of the few examples of successful on-board 

implementation of various operating modes using only 

the magnetic attitude control system (an attitude accuracy 

is 10-20 degrees).  

In some missions, accuracy about 10 degrees may not 

be good enough, so this paper suggests an approach that 

can provide higher accuracy. Firstly, since there is a 

problem of local uncontrollability, there is no way to 

provide orbital stabilization with high accuracy. 

Therefore, it is proposed to construct magnetically 

controllable attitude trajectory in the vicinity of the 

equilibrium position in the orbital frame, that is, to ensure 

the minimum projection of the control torque onto the 
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geomagnetic induction vector for the entire time interval 

with a given accuracy. The PSO method is used to find 

the optimal trajectory parameters. Secondly, the control 

gains are found using PSO method adapted for this 

particular case. This approach is based on the research 

done in [7]. The obtained control is tested during the 

simulation in the extended model of the motion with 

various disturbances that were not taken into account at 

the control construction step, and the inaccuracy of 

knowledge of SC initial conditions. 

 

2. Motion model 

The following reference frames are used: 

1) 
1 2 3Ox x x  – satellite-fixed frame (SF) – its axes 

coincide with the principal central axes of inertia; 

2) 
1 2 3OX X X  – orbital frame (OF) – the axis 

3OX  

is directed along the SC radius vector, 
2OX  – 

along the velocity of the SC on a circular orbit, 

the third axis complements the right-hand frame;  

3) 
1 2 3Oy y y  – reference frame (RF). 

In order to set the direction of the RF axis relative to 

the orbital coordinate system, we use the Euler’s angles 

, ,    (rotation sequence 2-3-1) (Fig. 1), and the 

corresponding direction cosine matrix B (Fig. 2): 

11 12 13

21 22 23

31 32 33

,

B B B

B B B

B B B

 
 

  
 
 

B  

where 

11 12 13

21

22 23

31

32 33

cos cos , sin , sin cos ,

cos sin cos sin sin ,

cos cos , sin sin cos cos sin ,

sin cos cos sin sin ,

cos sin , sin sin sin cos cos .

B B B

B

B B

B

B B

    

    

      

    

      

   

  

  

 

    

In the SF the satellite angular motion is described by the 

Euler’s equation: 

 
abs abs abs

grav aero ctrl dist

  

   

Jω ω Jω

M M M M
  (1) 

where 
11 22 33( , , )diag J J JJ  is the satellite inertia 

tensor, 
absω  is the absolute angular velocity of SC, 

   2

0 3 33grav  M Ae J Ae  is the gravitational torque, 

where 
2 3

0 r   and  3 0,0,1r e r  is the satellite 

unit radius vector in the orbital frame, 
aeroM  – the 

aerodynamic torque, ctrlM  – the control torque, and 

distM  is the external disturbing torque.  

The equation (1) supplemented with quaternion 

kinematic in the form of 
0 ),(qQ q  gives a system of 

differential equations for SC: 




 

1

0

0

,

0.5 ,

0.5 .

abs ctrl grav aero

dist abs abs

Tq

q

    

   


 


  

ω J M M M

M ω Jω

q ω

q ω q ω

  (2) 

where 
0abs ω ω Aω ,  0 00, , 0ω – orbital 

angular velocity,   is a cross product. 

 
Fig. 1. Euler’s angles (2-3-1) 

 
Fig. 2. Direction cosine matrices 

 

3. Construction of magnetically controllable attitude 

trajectory  

The construction of an optimal magnetically 

controllable attitude trajectory consists of two main 

stages: the search of optimal periodical trajectory 

coefficients and optimal control gains. Due to the fact 

that indirect optimization methods, in particular the 

maximum principle, can hardly be used in this case, it 

was decided to use the evolutionary optimization method. 

These algorithms allow solving problems with а complex 

form of cost function because it is computed during the 

algorithm execution and no gradient computation is 

required. 

This section is divided into three subsections. In the 

first subsection the optimization method is briefly 

described. In the second subsection an approach to 

finding the optimal trajectory using the PSO is provided, 

the corresponding cost function is formalized, the 
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application of PSO is described, and the result is 

presented. The third subsection is devoted to the problem 

of the necessary control gains search with the help of 

PSO. A formalized functional and results are also 

presented. 

 

3.1 Particle swarm optimization 

PSO is the algorithm of evolutionary optimization, 

which is based on the decision-making model by particles 

of the swarm [8–10]. Each particle p ( 1, ,p N  N is the 

number of particles in the swarm) at each generation i  

( 1, ,i G G is the maximum number of generations) has 

a certain position ,p ix  and velocity , .p iv  An 

optimization problem with the cost function 

 , : D

p i x  is posed for the swarm, where D is 

the number of problem parameters. Restrictions on 

parameter values are defined by the search space 

, ,| ,
.

1, , 1, , 1,

D j j j

p i low p i upx

j D p N i G

     
  

    

x
 

The particle position determines a possible solution 

of the optimization problem. To find the best position 

each particle makes a decision about the direction of 

displacement at the next moment of time (next 

generation) based on its current velocity, it’s best 

previous position and the best previous position among 

all particles: 

, , 1 ,p i p i p i x x v , 

  

 

, , 1

, , 1 , 1

, , 1 , 1 .

p i in p i

cog best p i p i

soc local best p i p i

c

c

c



 

 

 

  

 

v v

x x

x x

  (3) 

There are three components of the velocity in (3): 

˗ , 1in p ic v  is the inertial component, it is 

responsible for the search continuation in the 

same direction; 

˗  , , 1 , 1cog best p i p ic  x x  is the cognitive 

component, the desire to return to its own better 

position found earlier; 

˗  , , 1 , 1soc local best p i p ic  x x  is the social 

component, representing striving for a better 

position found in the vicinity – each particle p 

has information about n another particles (the 

case n N  is possible).  

The contribution of each velocity component varies 

with the help of corresponding weighting coefficients 

,inc  cogc  and 
socc . They can be selected in various 

ways [8]. In this paper the coefficients are defined as: 

 ,

low up up

in i in in in

i
c c c c

G
    

   , 0, ,up low up up

cog i cog cog cog cog

i
c U c c c c

G

 
   

 
 

   , 0, ,up up low low

soc i soc soc soc soc

i
c U c c c c

G

 
   

 
 

where  ,U a b  are uniformly distributed random 

numbers, a is a lower endpoint (minimum), b is an upper 

endpoint (maximum),  0.4, 0.9,low up

in inc c 

0,low low

soc cogc c  2.05.up up

soc cogc c   After calculating the 

velocity and position of the particle at the next moment 

in time, it is necessary to check whether the new position 

does not go beyond the search area: 

,

,0.15 0.15 .

j j j

low p i up

j j j

low p i up

x

v

 

 

 

   
 

Otherwise, it is necessary to normalize them. The 

coefficient 0.15 is chosen here based on the results 

obtained in studies [10,12], which show that each 

element of the minimum or maximum velocity values 

must be limited by the corresponding range of the search 

space and should be 10-20% of this range, otherwise the 

particle can easily leave the search space already in the 

first generations. Then in this case, the process of an 

optimal solution searching will slow down. 

Moreover, this work adopts an increasing size of the 

neighborhood by a unity after every 20k   generations. 

The initial size of the neighborhood equals 4.  

One consider that the swarm has found the best 

position and, therefore, the optimal problem solution, if 

at some iteration two search stop criteria are satisfied: 

˗ the cost function derivative is small (cost 

function stagnation); 

˗ all particles are falling into some neighborhood 

of the best position (swarm stagnation). 

 
3.2 Search of the optimal trajectory 

First of all, we should find special trajectory for SC. 

Magnetic attitude control system must maintain a given 

attitude. 

The spacecraft in a circular orbit with an altitude of 

550 kmh   is considered. The orbital inclination is 

57orbi   , orbital period is 3

0 2 1.58 h.Т r   The 

time step is 5 sdt   and the considered time interval is 

 00,t T . The SC has the shape of a parallelepiped 

10 20 30 cm,  the SC center of mass is displaced by 

1 cm along the positive direction of the second axis in the 

satellite-fixed frame. The inertia tensor of the satellite is 

  20.15, 0.13, 0.11 kg m .diag J   

At this stage, it is required to find a trajectory where 

the projection of the control torque 
ctrlM  onto the Earth's 

geomagnetic induction vector magnB  is minimal: 
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0

2

,,

1

0 , ,

1
, min

T
magn tctrl t

t t ctrl t magn t
T dt  

 
   
 
 


BM

M B
. 

In this case we use the direct dipole model to describe the 

geomagnetic field, [13]:  

, 0

cos ( )sin

cos

2sin ( )sin

orb

magn t orb

orb

u t i

B i

u t i

 
 

  
  

B , 

,magn tB  is the geomagnetic induction vector in the orbital 

frame, 3

0 eB r , 
0( )u t t  is dependence the 

argument of latitude on time. 

Consider the angular trajectory in the form of periodic 

functions: 

 

1 2

3 4

1 2

3 4

1 2

3 4

( ) sin ( ) cos ( )

sin 2 ( ) cos 2 ( ),

( ) sin ( ) cos ( )

sin 2 ( ) cos 2 ( ),

( ) sin ( ) cos ( )

sin 2 ( ) cos 2 ( ),

t a u t a u t

a u t a u t

t b u t b u t

b u t b u t

t g u t g u t

g u t g u t







  

 

  

 

  

 

  (4) 

where 
1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,a a a a b b b b g g g g  are the 

required optimal constants specifying the trajectory (will 

be found as a result of PSO).  

The absolute angular velocity in terms of the entered 

angles (in this stage , (1,1,1),diag  A B D E  see 

Figs. 1, 2) is 

  0( ) ,
SF

SF OF OF SF

abs ref rel  ω A ω ω ω   (5) 

where  0, 0, 0SF

rel ω  – since we assume that the 

spacecraft is already on the trajectory,  0 00, , 0OF ω  

is orbital angular velocity (constant vector in the OF),  

 

1 2 3+ +

0 sin cos cos

1 0 sin .

0 cos sin cos

OF

ref   

  

   

  

   

     
     

       
          

ω j j j   

  (6) 

As a result, 

 
0

0 sin cos cos

sin .

0 cos sin cos

SF

abs

    

   

    

   
   

     
       

ω A   (7) 

Similarly, the derivative of the angular velocity is 

    0( ) .
SF SF

SF OF OF SF OF

abs ref rel ref   ω A ω ω ω Aω   (8) 

Here  0, 0, 0SF

rel ω ,  1, 2, 3,, ,OF OF OF OF

ref ref ref ref  ω , 

 0 ,abs 
  A ω Aω A  

   
3 2

0 3 1

2 1

0

0

0

abs

 

 

 
 

 
 

      
 
  

W ω Aω ω   

is the cross product matrix. 

We express 
ctrlM  from the equation (1) and then 

substitute the angular velocity (7), its derivative (8), and 

expressions for gravM  and 
aeroM  as 

ctrl abs abs abs grav aero    M Jω ω Jω M M . 

Here we consider the case when  0, 0, 0dist M , 
aeroM  

is calculated as in the paper [14]. 

After all the necessary substitutions, we find that the 

control torque 
ctrlM  is a function of 12 parameters. The 

optimal ones must be found using the PSO. The total 

number of particles is 24N  (2 times more than the 

number of required parameters). Each particle has a 12-

dimensional position vector in the search area: 

 , 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , , ,p i a a a a b b b b g g g gx  

12, 24, 100D N G    

Parameter constraints are as follows 

2 , 2 , 1, ,j j

low up j D        stands for ,a  ,b  and g   

The results of the algorithm operation are shown in 

Fig. 3, 4 and 5. Fig. 3 demonstrates the reference 

trajectory constructed using PSO method. The trajectory 

lies entirely in the interval  2 , 2 , which satisfies the 

given constraints. Fig. 4 shows the control torque 

projection onto the geomagnetic induction vector, which 

is calculated at each step of time t as follows: 

,,

,B,

, ,

,
magn tctrl t

ctrl t

ctrl t magn t

 
 
 
 

BM
M

M B
. 

And in the Fig. 5 we can see the required control torque.  

The parameters for the reference trajectory are 

 

 

2 3

1 1

2 3

2 2

3 5

3 3

3 4

4 4

3

1

3

2

2

3

4

1.016 10 rad, 4.028 10 rad,

2.545 10 rad, 9.717 10 rad,

1.449 10 rad, 4.841 10 rad,

1.124 10 rad, 2.231 10 rad,

8.067 10 rad,

4.127 10 rad,

2.433 10 rad,

4.63

a b

a b

a b

a b

g

g

g

g

 

 

 

 







    

    

    

   

 

  

  

  47 10 rad.

  (9) 



72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.  

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-21- C1.8.4.x63346                          Page 5 of 9 

 
Fig. 3. Reference trajectory constructed using PSO 

 

 
Fig. 4. Control torque projection onto the geomagnetic 

induction vector 

 
Fig. 5. Control torque 

ctrlM  

One can see that the trajectory fully satisfies the given 

constraints, and the projection of the control torque onto 

the Earth's magnetic induction vector is about 5%. The 

peak on the chart in the Fig. 4 is explained by the fact that 

the absolute value of the control torque ctrlM  at this 

moment of time is close to zero (Fig. 5). 

 

3.3 Selection of control gains 

After obtaining the reference trajectory, it is 

necessary to construct a magnetic torque, which ensures 

convergence. 

We rewrite the dynamic Euler equations (1) by 

substituting the derivative of the absolute angular 

velocity (8) (hereinafter, the indications of coordinate 

systems are omitted): 

    0( )

,

ref rel ref

abs abs grav aero ctrl

   

    

J A ω ω ω Aω

ω Jω M M M

 

Then 

 
   0( ) .

rel grav aero ctrl abs abs

ref ref

     

  

Jω M M M ω Jω

J A ω ω J Aω
  (10) 

To ensure asymptotic stability we will look for a 

Lyapunov function in the following form [15]: 

        11 22 33

1
, 1 + 1 1 ,

2

0,

rel rel a

a

V k d d d

k const

     

 

ω Jω
 

then we get the expression for V :  

     

     

 

3, 21 21 2, 13 31

1, 32 23

,

, ,

, ,

rel rel a rel rel

rel rel rel a rel

rel rel a

V k d d d d

d d k

k

 



     

    

 

ω Jω

ω Jω ω S

ω Jω S

where ijd  – the elements of the matrix D  (Fig. 2),

23 32 1,

31 13 2,

12 21 3,

, ,

rel

rel rel

rel

d d

d d

d d







  
  

     
      

S ω and  
ak  is a positive 

coefficient,    N mak   . 

To satisfy the Barbashin-Krasovsky theorem, the 

derivative of the candidate Lyapunov function must be 

non-positive due to the equations of motion. So, we 

require that 

 , 0.rel a relk k k const     Jω S ω   (11) 

Taking into account (10) and (11) the expression for 

the control torque can be written in the form: 

 
0( )

ctrl rel a abs abs

ref ref grav aero

k k    

    

M ω S ω Jω

JA ω ω JAω M M
  (12) 

In this case we find that the control torque 
ctrlM  

depends in two 2 control parameters ,ak k . The optimal 

ones also must be found using the PSO, substituting the 

values for the reference trajectory found at the previous 

stage (9). 

However, in contrast to the previous case, the control 

torque 
ctrlM  cannot be calculated directly, since it 

depends on the phase variables which must be obtained 

by integrating the equations of motion (2). Integration 
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step and control step are 5 sdt  . For numerical 

integration, the Runge-Kutta 4th order method is used. 

It is important to note that only the component of the 

control torque, which is not directed along the vector of 

the Earth's geomagnetic induction, should be substituted 

into (2) when integrating. So the control torque applied 

by magnetorquers is 

magn magn M m B , 

where 
2

magn ctrl

magnB




B M
m  is SC dipole moment, see 

Fig. 6. 

 
Fig. 6. Obtaining a magnetic control torque 

 

Now we can set an optimization problem for the 

swarm in this case. The coefficients ,ak k  must be 

strictly greater than 0, so we choose the cost function by 

finding the derivative of 
1 taking into account the 

expression for the control torque (12): 

    

    

0

0

2

2 , , , ,

0

2

, , ,

0

min.

T
T T

rel t magn t ctrl t magn t

t t

T
T T

t magn t ctrl t magn t

t t

 

 


   




  







ω B M B

S B M B

 

Parameters for the PSO method in this case: 

 , , , 2, 12, 100p i ak k D N G   x  

Its restrictions: 
1 8 1 5

, ,

2 5 2 2

, ,

10 , 5 10 ,

5 10 , 10 .

a alow k low up k up

low k low up k up 

   

   

 

 

    

    
 

The search for the coefficients is carried out under the 

assumption that the initial data of the spacecraft coincide 

with the initial data of the reference trajectory 
0 0 0, ,    

and angular velocity 
initω , which can be obtained by 

substituting the found parameters of the trajectory (9) 

into the expressions (4) and (6).  

As a result, the coefficients (control gains) found by 

the PSO are 
8 46.578 10 , 1.119 10 .ak k
    

Figs. 7-12 represent simulating results.  

So, the trajectory found at the first stage is 

successfully implemented by the magnetic control 

obtained at the second stage. Thus, we constructed 

magnetically controllable attitude trajectory using PSO 

method. 

 
Fig. 7. Reference and real trajectory 

 

 
Fig. 8. Reference trajectory deviation 

 

 
Fig. 9. Relative angular velocity 
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Fig. 10. Control torque 

ctrlM  for each of two stages 

 
Fig. 11. The difference between the required control 

torque 
ctrlM  and the realized one magnM  

 
Fig. 12. SC dipole moment 

 

4. Numerical simulation and results 

The extended model with various disturbances and 

the inaccuracy of knowledge of SC initial conditions is 

considered for the numerical simulation and algorithm 

operation illustration. The three-axis magnetic attitude 

control system should ensure SC stabilization on a given 

trajectory. Parameters and data used in this case are 

presented in the Table 1. In the simulation the inclined 

dipole model is used.  

 

 Table 1. Parameters for numerical simulation 

Name Value 

Simulation time  

0

0,

20 33 h,

t T

Т T



 
 

SC initial angular 

velocity 
10 rad/sinit ω ω  

 

SC initial 

orientation 

0

0

0

10 rad
180

10 rad
180

10 rad
180


 


 


 

  

  

  

 

 

Magnetic field 

model 

 

inclined dipole, [13] 

 

Inaccuracy of 

knowledge of the 

density of the 

atmosphere  

 

20% 

External random 

disturbances 

910dist dist

 M k , 

distk  is normally distributed 

random vector, 

 , 0,1 , 1,3i distk i   

 

The results are shown in Figs. 13-18.  

One can see that the real trajectory differs from the 

reference one by 1-2 degrees (Fig. 13-14). However, the 

specified constraints are still met (stabilization accuracy 

1  degrees in steady state). The deviation of the 

reference trajectory decreases with time and in the steady 

state it remains at the same level for an arbitrarily long 

time (the simulation can be continued for more than 20 

turns), which indicates the stability of the resulting 

motion. 

The control torque realized by the magnetic attitude 

control system magnM  also differs from the calculated 

one (Fig. 16). In this case, it can be seen that in steady 

state the difference between the required control torque 

ctrlM  and the realized one magnM  is about 
910 N m   

(Fig. 17), which is about 10-20% of the absolute value of 

the required control torque. This means that 80-90% of 

ctrlM  can always be realized. In general, it is possible to 

ensure the controllability of the SC, while satisfying the 

specified constraints on the attitude accuracy. 
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Eventually the results of numerical simulation 

indicate that such control torque is effective even in the 

presence of external disturbances not taken into account, 

such as inaccuracy in the knowledge of the initial 

conditions, the atmosphere model or the presence of 

random disturbances. 

 
Fig. 13. Reference and real trajectory 

 

 
Fig. 14. Reference trajectory deviation 

 

 
Fig. 15. Relative angular velocity 

 
Fig. 16. Control torque 

ctrlM  and  

magnetic torque magnM  

 

 
Fig. 17. The difference between the required control 

torque 
ctrlM  and the realized one magnM  

 

 
Fig. 18. SC dipole moment 
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5. Conclusions  

The article proposes a method for constructing an 

angular trajectory, which is fully realizable by a magnetic 

attitude control system. It is shown how the particle 

swarm optimization method is applied to find the optimal 

trajectory coefficients. The trajectory with the minimum 

control torque projection on geomagnetic induction 

vector is constructed. Then, the control gains are obtained 

using the Lyapunov function approach to ensure 

asymptotic stability. Optimal control gains are also found 

using the PSO method adapted for this case. Finally, 

numerical simulation is carried out. It is shown that all 

the constraints are satisfied in the extended model as 

well. The orientation accuracy is about 2 degrees. 
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