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Abstract 

The problem of satellite swarm relative drift stopping is considered in the paper. The proposed decentralized 

control takes into account a communication constraint such as limited communication area, i.e. the maximum 

distance between the satellites. Only the satellites within communication area can be identified by relative motion 

determination system. The control algorithm aim is to eliminate the mean relative drift of all the satellites inside the 

communication area. The purpose of the work is to develop an approach, and to study the performance of the 

proposed decentralized control algorithm. The analytical study of the controlled system is performed. It is shown that 

the dynamical matrix of differential equations for the relative drift coincides with the Laplacian matrix of the 

communication graph. The eigenvalues of the system has one zero value and the rest negative values in case of the 

connected communication graph of the swarm. It means that all the relative drifts converge to the same value under 

the proposed control. The speed of convergence is defined by the maximal negative eigenvalue that depend on the 

graph topology. The initial drift and the convergence speed make it possible to estimate the communication distance 

for different topologies to provide the connectivity of the graph. The shortcoming of this estimation is that the graph 

is dynamically changing during the convergence. The different approach is to assume that after the launch, the 

relative distances are small and the graph is complete. Considering the initial velocity normally distributed errors, it 

is possible to estimate the distance between any two satellites after the convergence. It provides an estimation on the 

communication distance to ensure the relative drift elimination between all the satellites in the swarm. The resulted 

estimations are validated using Monte Carlo simulations of the controlled motion after the launch with dynamical 

communication graph. 
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1. Introduction 

A swarm is a type of satellite formation involving a 

large number of satellites that typically requires only 

bounded relative motion with no other restrictions. The 

advantages of random relative trajectories in the swarm 

are reduced dependence on the failure of the specific 

satellite and soft demands for the on-board hardware 

and software. The deployment of distributed systems 

implies some difficulties caused by the errors in the 

initial conditions after the separation from the launch 

vehicle. This leads to a slightly different orbital period 

of the satellites, so the relative trajectories become 

unlimited and the swarm degrades. Space systems 

consisting of numerous satellites often require 

decentralized relative motion control algorithms which 

are also characterized by some implementation errors. 

The decentralized control performance depends on the 

size of the satellite’s communication area and on the 

number of the communicating satellites which relative 

motion is taken into account for control calculation. All 

these factors may cause the separation of some satellites 

from the swarm. 

A number of control algorithms for the swarm using 

different control approaches has been proposed in 

literature. The common approach is to include a 3-axis 

propulsion system onboard, allowing unrestricted thrust 

direction. If the number of thrusters is limited, and 

thrust direction cannot be arbitrarily changed, a single-

input control approach is also feasible, assuming the 

thrust vector is fixed in the body reference frame [1]. 
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Miniaturized satellites have unavoidable constraints on 

size, mass, energy, and therefore conventional 

propulsion systems can hardly be used for relative 

motion control. Moreover, the thruster plumes can 

negatively affect neighbour satellites, “blinding” optical 

or thermal instruments onboard. Alternative approaches 

have been proposed in recent years to develop effective, 

self-sufficient methods for motion control without 

propellant consumption: using aerodynamic drag force 

and solar radiation pressure. Both methods require sails 

onboard or satellite specific form-factors with high area-

to-mass ratios [2–7]. The principal idea is to use a 

difference in environmental forces acting on each 

satellite in the formation. Satellites connected by tethers 

also do not require any fuel, the relative motion is 

controlled by varying tether length [8–11], though the 

realization of this concept is complicated because of 

flexible tether motion [12]. Another approach is to use 

electrostatic force for formation flying control [13]. This 

concept is based on the SCATCHA mission [14] where 

the satellite electrostatic charge system was tested. The 

following papers [15–24] developed this idea. 

In this paper the control method is based on the 

relative drift elimination algorithm developed by the 

authors in [4]. Its aim is to eliminate mean relative drift 

between the satellites in the communication area. In [4] 

it is achieved by the difference in the aerodynamic drag 

force applied in along-track direction. The proposed 

control was studied numerically and the range of system 

parameters when the control successfully achieves the 

near zero drift is estimated. However, in some cases 

some of the satellites separate from the group and the 

swarm become divided. Therefore, the purpose of this 

work is to study the performance of swarm control 

algorithm, and to develop simple estimation of the 

necessary size of communication area which guarantees 

convergence of the relative motion under given launch 

errors. The results obtained by the Monte Carlo method 

are compared with the developed estimations. 

 

2. Problem Statement 

Consider a significant number N  of homogenous 

satellites launched in LEO. Each satellite is equipped 

with a relative motion determination system able to 

estimate the position and velocity of any neighbour 

satellite within the maximum range commR , which 

further will be referred as communication radius. If the 

distance to some satellite is more than commR  – no 

information about its motion is available. The satellites 

are capable to produce a control force in the along-track 

direction either by the on-board propulsion or by some 

of the fuel-less approaches such as the difference in the 

aerodynamic drag, electromagnetic interaction, Lorenz 

force, etc. Each satellite applies the decentralized 

control algorithm in order to stop the relative drift 

between all the satellites within the communication 

area. 

In the paper two approaches are proposed. First, 

analytical approach based on the fixed communication 

topology allows estimating the convergence time for the 

controlled motion. It allows to preliminary calculate the 

worst case for the system. The second approach is to 

assume the complete initial graph and estimate the 

required communication radius demanding the complete 

graph after the convergence. It provides the optimistic 

scenario. The two estimations can be verified by the 

numerical simulations of the swarm controlled motion. 

 

2.1 Motion equations 

For algorithm performance investigation, the relative 

motion equations are required. The Hill-Clohessy-

Wiltshire (HCW) equations are utilized to describe the 

relative motion of two arbitrarily chosen satellites 

within the swarm [25], in a leader-follower system 

expressed in the rotating Local-Vertical-Local-

Horizontal reference frame (LVLH) designated as 

Oxyz . Its origin is located at a reference point moving 

along a circular orbit with radius 0r , at an orbital 

angular velocity  . The z-axis points towards the radial 

direction, the y-axis is aligned with orbital momentum 

and the x-axis completes the right-handed orthogonal 

frame. These linearized ordinary differential equations 

of free motion can be solved analytically. The equations 

are valid for small relative distances, therefore the 

relative distance between the leader and follower must 

be several orders of magnitude smaller than the orbital 

radius. 

Let  , ,
T

i i i ix y z=r  and , ,
T

j j j jx y z =  r  be the 

vectors of the i-th and j-th satellites in the LVLH 

reference frame, , 1,..., , 1,..., ,i j i N j N = =  where N  

is the number of the satellites in the swarm. Then the 

components of the relative position vector 

, ,
T

ij j i ij ij ijx y z = − =  r r r  can be described by 

following equations: 

2

2

2 0,

0,
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ij ij

ij ij

ij ij ij

x z
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z x z


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− − =
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The solution can be written as follows: 

( )

( )

( )

2 cos ,

cos ,

2 sin ,

ij ij ij ij

ij ij ij

ij ij ij ij

x D A t

y B t

z C A t

 

 

 

= + +

= +

= + +

 (2) 

where , , , , ,A B C D    are the motion parameters that 

depend on initial conditions: 
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Consider the controlled motion equations of the 

swarm, and assume that the i-th satellite is equipped 

with a motion control system able to produce the 

acceleration .iu  In this case the parameters 

, , , , ,A B C D    are determined by following differential 

equations: 

( )
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 (4) 

where , ,
T

x y z

ij ij iju u u    are components of acceleration 

difference j i−u u  between i-th and j-th satellite. In this 

work the acceleration only along Ox  axis is considered. 

Parameters ijC  are responsible for the relative drift and 

are of special interest in our work. 

 

2.2 Decentralized control algorithm 

In this work the decentralized control for relative 

drift elimination based on the mean drift parameter 

value is considered. If for the i-th satellite there are 

commN  satellites with known relative motion, then the 

average constant iC  is equal to: 

1

/
commN

i ij comm

j

C C N
=

=  . (5) 

The corresponding control applied to the satellite has 

the form: 

.i iu k C= −  (6) 

where 0k   is the control parameter. 

 

2.3 Launch conditions 

Consider the application of the proposed control 

rules for the task of the swarm of nanosatellites 

construction after the launch. It is assumed that the 

satellites separate from the bus-launcher in the Ox  axis 

direction one after another with the time interval t  

between the launches. The velocity of the ejection is the 

same for all the CubeSats, however due to launch 

system inaccuracy the ejection velocity 0V  is subjected 

to errors. So, the initial velocity vector 0V  in orbital 

reference frame is modelled as  0 , 0, 0 ,
T

eV=V where 

0V  is normally distributed random value with expected 

value    0 , 0, 0
T

eE V=V  and variance 

   0Var , ,
T

V V V  =V . 

 

3. Communication graph and convergence rate 

3.1 Graph theory preliminaries 

The term graph will refer to a simple undirected 

unweighted graph ( , )G V E= , where V is the set of 

vertices, E is the set of edges. Every edge connects two 

distinct vertices; every pair of vertices is connected by 

at most one edge.  

If every pair of vertices is connected by exactly one 

edge, G  is called complete.  

An adjacency matrix Â  of a graph G  on N vertices is 

a N N matrix such that the element in i-th row and j-th 

column is one when there is an edge between vertex i 

and vertex j, and zero when there is no such edge. 

A degree of a vertex v  is the number of vertices 

adjacent to v . A degree matrix D̂ is a diagonal 

N N matrix with diagonal elements being the degrees 

of individual vertices.  

A path between vertices i and j in a graph is a sequence 

of edges which joins these two vertices. The graph is 

called connected if there is a path between any two 

vertices. The length of a path is the number of edges in 

it. The diameter of a connected graph is the greatest 

distance between any pair of vertices. 

 

 

3.2 Laplacian matrix eigenvalues estimations 

The control equations presented above allow 

reformulating the problem in terms of graph theory. We 

associate a graph to a given swarm. The vertices of the 

underlying graph are the satellites. The edge between 

vertices number i and j exists if i-th and j-th satellites 

“see” each other, i.e. the distance between them is less 

than the communication radius commR . Within such an 

interpretation the complete graph on N vertices 

corresponds to a swarm of N  satellites, where every 

satellite can communicate with every other one. 
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According to equations presented above swarm 

control is determined by relative drifts ijC . Assuming 

iC  is the drift of the i-th satellite with respect to LVLH 

reference frame relative drifts are ij i jC CC = − . 

The average controlled drift iC  depends on 

individual drifts iC  in a following way. For i-th 

satellite: i

commN  satellites contribute to average drift, 

1i

commN N− −  do not affect the control in any way, the 

remaining one is the i-th satellite itself.  

Let matrix Ŝ  be a matrix of size N N  where 

  and sat  does not see sat 

 and sat  se  

1 if 

0 if  

i es s1/ f at   

ij

i

comm

i j

s j i j

j j

i

N ii

=




=

− 

  

Then ˆC SC= , where C and C are column vectors of 

corresponding drifts.  

For a graph G  with adjacency matrix Â  and degree 

matrix D̂  the Laplacian matrix (or sometimes 

Kirchhoff matrix or admittance matrix) is defined as 
ˆˆ ˆL D A= − [26,27]. The normalized Laplacian matrix is 

defined as 
1/2 1/2ˆ ˆ ˆD LD− −= [26]. While matrix Ŝ  is not 

equal to any of aforementioned matrices, Ŝ  is similar to 

 via 

 
1/2 1/2ˆ ˆ ˆS D D−=  (7) 

so the spectra of Ŝ  and  coincide. The spectrum of 

 is an important property of the underlying graph G . 

In our control algorithm two properties of spectrum are 

of the most importance [26]. 

1) Zero is always an eigenvalue. The multiplicity of 

zero in the spectrum is equal to the number of 

connected component of a graph G .  

2) All nonzero eigenvalues are strictly positive.  

That means, that if a graph is connected i.e. the satellites 

of the swarm are forming one connected group, then the 

control always nullifies relative drift. One-dimensional 

null-vector subspace corresponds to the drift of the 

whole swarm as a group.  

Moreover, as differential equations of the control are 

first-order linear, the relative drift exponentially 

decreases to zero. The smallest positive eigenvalue 1  

corresponds to the speed of such a decrease (the least of 

all the exponent powers). 

For general connected graph G  it is difficult to 

analytically calculate convergence rate 1 , nevertheless 

the following is true. 

1) For a complete graph on n vertices 
1

1

n

n
 =

−
[26] 

2) For a general graph on n vertices with maximal 

vertex degree maxd  and diameter   

1

4

maxn d
 


[28,29] 

It is necessary to emphasize that the lower bound is not 

tight and in fact is very bad for general graphs, so 

typically the speed of drift convergence due to the 

presented control would be much higher. 

 

4. Dependence of communication radius on the 

launch parameters 

Due to the considered launch scheme from the 

carrier rocket, it can be seen from the motion equations 

(2) that parameter ijD  mainly affects the divergence of 

the swarm. Thus, to determine the radius of 

communication sphere necessary to maintain the 

connectivity of the swarm, ijD  needs to be estimated. 

This parameter is random variable, therefore only its 

expected value and variance can be found. In view of 

the fact that mission consists of two phases: the launch 

and the controlled motion, the expected value ijE D    

and variance Var ijD    after the launch will be 

estimated first. Using equations (3), the value of 

parameters 1 2,D D for the first two launched satellites at 

the end of the first phase can be found: 

1 1 0 1 0

2 2 0 2 0

( ) 3 ( ) ( ),

( ) 3 ( ) ( 1) ( ),

D T C t N t D t

D T C t N t D t





= −  +

= − −  +
 (8) 

where T  is the time when the last satellite is launched, 

1 0 2 0( ), ( )C t C t  are the initial drift values of first and 

second launched satellites respectively, t  is the time 

interval between launches, 1 0 2 0( ), ( )D t D t  are the initial 

values of parameters 1 2, .D D  Now, taking into account 

that the initial values of 
1 2 1 2, , ,D D C C  are 

independent random variables,  21Var ( )D T  and 

 21( )E D T  can be calculated: 

   

   

   

21 2 1

2 2 2

2 0 2 0

2 2 2

1 0 1 0

Var ( ) Var ( ) ( )

9 ( 1) Var ( ) Var ( )

9 Var ( ) Var ( ) ,

D T D T D T

t N C t D t

t N C t D t





= −

=  − +

+  +

 (9) 

   

   

   

21 2 1

2 0 1 0

2 0 1 0

( ) ( ) ( )

3 ( 1) ( ) 3 ( )

( ) ( ) .

E D T E D T D T

N tE C t N tE C t

E D t E D t

 

= −

= − −  + 

+ −

 (10) 

Substituting equations (3) and considering errors 

only in ejection velocities,  
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  2 0

21

1 0 2 0 1 0

( )
( ) 3 ( 1)

( ) 2 ( ) 2 ( )
3

3 ,V

x t
E D T N tE

x t z t z t
N tE E E

t





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

 
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 

     
+  + −     

     

= 

 (12) 

where ,V V   are standard deviation and expected 

value of ejection velocities accordingly. First two 

launched satellites were chosen to calculate expected 

value and variance because they have the biggest 

Var ijD    between satellites. 

The next step is to estimate  21E D  and  21Var D  

at the end of the second phase. Using equations (4), the 

value of parameters 1 2,D D  for the first two launched 

satellites at the end of the controlled motion can be 

found: 

1

2 1 2 1

2 1

2 1 1 2

( ) ( ) ( ) ( )

3 ( ) 3 ( )

( ) ( ) ( )3 ,

end end

t

D T D T D T D T

C t dt C t dt

D T D T b b e dt


 

 −

− = −

− +

= − + −

 



 (13) 

where endT  is the time when the second phase ends, 

1 2,b b  are coefficients defined by initial 1 2,C C . 

Estimating the integral at the limit to infinity: 

21 2 1 1 2

1

1
( ) ( ) ( ) ( )3 .endD T D T D T b b 


= − + −  (14) 

The  21Var ( )endD T  and  21( )endE D T  can be 

calculated as: 

   21 2 1

1 2

1
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2 2 2 2

2 2 2
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2 2 2

2 2

1

Var ( ) Var ( ) ( )
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8 1
9 (2 2 1) 18

8 18
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V

V

V

D T D T D T

b b

t N N

t N N





 

  


 
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 
+ − 

 

 
=  − + + + 

 

 
=  − + + + 

 

 (15) 

   21 2 1

1 2

1

( ) ( ) ( )

1
( )3 3 .

end

V

E D T E D T D T

E b b t 


= −

 
+ − =  

 

 (16) 

Introducing new designations  21( )D endE D T =  

and  21Var ( )D endD T = , we can estimate required 

radius of communication sphere commR  for two 

neighbouring satellites to be connected: 

2 2

2 2

1

3

8 18
3 3 9 (2 2 1) .

comm D D

V V

R

t t N N

 

 
 

= +

=  +  − + + +
 (17) 

 
5. Numerical investigation and verification 

5.1 Parameters of the simulations 

Consider the application of the proposed control 

algorithms and strategies for the problem of the 

nanosatellites swarm construction after the launch. All 

parameters used in the simulation of the controlled 

motion of the swarm are presented in Table 1. 

 

Table 1. Simulation parameters 
Main parameters of the swarm 

Number of satellites in the swarm, N  20 

Mass of satellite, m   3 kg 

Initial conditions 

Ejection velocity, eV   0.05 m/s 

Deviation of ejection velocity, V   0.01 m/s 

Time interval between ejections, t  3 s 

Orbital parameters 

Orbit altitude, h  500 km 

Orbit inclination, i  o51.7  

Algorithms parameters 

Time interval between control 

calculation 

600 s 

Control coefficient, k   
71.85 10−   

 

Since the motion along the Oy  axis is uncontrolled, the 

trajectories in figures are displayed further in projection 

on Oxz  plane. 

 

 

 

5.2 Example of the successful drift elimination 

Consider the application of average drift elimination 

control law to the swarm construction problem. The 

control begins after the launching of all satellites. The 

average drift elimination control (6) is calculated every 

600 s taking into account restrictions implied on radius 

of communication sphere. For initial conditions 

presented at Table 1 the commR  is 730 m according to 

(17). Fig. 1 shows the controlled relative motion 
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trajectories, which after a while become closed. Thus, 

the swarm of satellites is constructed. The drifts ijC  

relative to the first ejected satellite are shown in Fig. 2. 

The relative drifts converge to zero which confirms that 

in Fig.1 relative trajectories of the satellites in the 

swarm become closed. One can see that the swarm is 

constructed in 7 hours. 

 
Fig. 1. Relative trajectories under proposed control in 

case when 3comm D DR  = +  

 

 
Fig. 2. Relative drifts 

 

Fig. 3 shows the applied control for all satellites. The 

control coefficient was chosen so that control did not 

exceed the feasible values of aerodynamic force. 

Initially the calculated control is maximum for almost 

all satellites, and it decreases as the relative drift 

converges to a zero. Fig. 4 demonstrates ijD  parameters 

relative to the first ejected satellite. These parameters 

become constant, since relative drift converges to zero. 

 
Fig. 3. Required control  

 

 
Fig. 4. iD  parameter 

 

5.3 Swarm separation example 

In this section the example of swarm separation is 

considered. The initial conditions are the same as in the 

presented earlier simulation. The difference will be only 

in restrictions implied on radius of communication 

sphere. For this simulation commR  is counted as 

0.5D D +  that is 122 m. The relative trajectories of 

the satellites are shown in Fig. 5. One can see that 

satellites are separating from each other. 

 
Fig. 5. Relative trajectories under proposed control in 

case when 0.5comm D DR  = +  
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Fig. 6 demonstrates the drifts ijC  relative to the first 

ejected satellite and it can be seen that relative drifts 

cannot converge to zero. This happens because the 

value of commR  was chosen small and satellites can 

analyze motion only of few satellites in the group. In 

addition, Fig. 6 shows that satellites divided into five 

independent groups and had similar values of drift 

inside them. The ijD  parameters relative to the first 

ejected satellite are shown at Fig. 7. In the contrary to 

previous simulation, ijD  parameters increase in time 

and do not converge to constant values.  

 

 
Fig. 6. Relative drifts 

 

 
Fig. 7. iD  parameter 

 

 
Fig. 8. Connectivity component of graph 

Fig. 8 shows component of connectivity of the graph. 

During first 15 control steps, the group of satellites 

formed connected graph because component of 

connectivity was one. After the 15th step the graph 

became disconnected and had component of 

connectivity equal to five. This also confirms that 

satellites divided into five independent groups.  

 

5.4 Monte Carlo simulations 

The dependence of the swarm separation effect on 

the communication sphere radius is of particular interest 

and should be investigated. Since the considered 

ejection velocity errors are random values then the 

results of the swarm construction are also random. Let 

us investigate the performance of control laws using 

multiple numerical simulations with various parameters. 

A series of identical numerical experiments with fixed 

set of parameters, except the commR , is performed. After 

each simulation the relative drifts convergence to zero is 

checked. It is possible that at the end of the simulation 

the satellites in the swarm will form several clusters, or 

subgroups, such that inside one cluster relative drifts are  

close to zero. If the swarm is divided, the number of 

satellites in each subgroup with the same relative drifts 

is calculated. Denote the amount of satellites in the 

biggest subgroup as clusterN . The effect of the swarm 

separation is measured as /cluster totalN N . If 

/ 1cluster totalN N =  then there is no satellite that is 

separated from the swarm. If this ratio is close to 1, this 

corresponds to the case when a small number of 

satellites leave the swarm but the majority remain in the 

same group. Other cases refer to the separation of the 

group into many independent subgroups. 

For each value of commR  (e.g. 0.75comm D DR  = + ) 

200 simulation were carried out. For each simulation a 

ratio /cluster totalN N  and number of subgroups are 

calculated. The results of these numerous simulations 

are presented in Fig. 10 and Fig. 11. The x axis in these 

figures corresponds to the   in comm D DR  + = . 

When 3comm D DR  = +  it can be seen that satellites 

form one group in all 200 simulations. It means that our 

numerical results corresponds to analytical estimation 

(17) of commR  necessary to maintain connectivity of the 

swarm. Also, with decrease of  , the connectivity of 

the swarm decreases. 
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Fig. 10. Percentage of satellites aligned the drift 

depending on the value of commR   

 

 
Fig. 11. Number of groups in the swarm depending on 

the value of commR  

 

6. Conclusions 

Application of decentralized control based on the 

motion of satellites inside the communication sphere 

makes it possible to construct a swarm of satellites after 

the launch. However, it is necessary to take into account 

the communication constraints caused by the features of 

the relative motion determination system and/or inter-

satellite communication. The swarm separation effect is 

studied numerically depending on different values of 

commR . Our analytical estimations of commR  necessary to 

maintain connectivity of the swarm was supported by 

numerical results obtained in Monte Carlo simulations. 
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