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Abstract 

The goal of the proposed 3U CubeSat mission is to test GNC system for a future flight to a near Earth asteroid. In 

order to gain the goal a 3U CubeSat is to get to a vicinity of a space debris in a sun-synchronous LEO. In the paper a 

scheme of the safe autonomous controlled relative motion of the CubeSat in the predefined relative area is proposed. 

An extended Kalman filter onboard the CubeSat is used to estimate the relative state vector. Using this vector and the 

covariance error matrix, the relative trajectory is predicted by integrating the equations of relative motion over the 

next two hours of flight. When the satellite position error ellipsoid reaches a dangerous distance with respect to the 

space debris, a collision avoidance maneuver is applied to achieve a safe relative distance. To provide necessary 

stabilization to the debris direction for the laser range finder measurements it is necessary to obtain optical sensor 

measurements available only for the illuminated part of the orbit. In case when the measurements are not available 

the current state vector is estimated using only the integration of the motion equations. The proposed scheme of the 

controlled motion is tested in the laboratory facility COSMOS at KIAM using air bearing planar test bed. A debris 

mock-up and the 3U CubeSat mock-up equipped with thruster imitators move almost frictionless along the surface, 

and thus the relative motion in the orbital plane is simulated. The results of the control algorithm tests are presented 

in the paper. 

Keywords: Space debris removal, collision avoidance, laboratory testing, aerodynamic testbed 

 

 

1. Introduction 

 Currently, there are different approaches to solving 

the problem of space debris. One of the ways is to 

launch special small spacecraft that are able to attach to 

a non-cooperative object and, using a propulsion 

system, change the orbit of space debris. With such a 

debris removal scheme, the task of controlling the 

relative motion of the spacecraft during the approach to 

an arbitrarily rotating object arises. To increase the 

probability of mission success, the developed control 

algorithms are tested in ground conditions using special 

laboratory stands. 

The active space debris removal using small satellite 

can be divided at several stages. First, the space debris 

should be observed from safe relative distance in order 

to determine its angular motion and possible point for 

the capturing. For this stage the natural closed relative 

trajectory should be obtained by the active satellite 

control system. However, due to disturbances the 

relative drift can appear. In that case if the relative 

distance between the satellite and the debris become 

dangerous a collision avoidance maneuver should be 

applied, moreover after its execution the relative 

distance should remain suitable for the debris 

observation. The paper proposes a set of rendezvoius 

control algorithms applications from the far range and a 

controlled motion scheme in the debris observation 

stage of the proposed mission. 

 

2. 3U CubeSat details   

The goal of the proposed 3U CubeSat mission is 

to test GNC system for a future flight to a near Earth 

asteroid. In order to gain the goal a 3U CubeSat is to get 

to a vicinity of a space debris in a sun-synchronous 

LEO. The CAD model of the 3U Cube Sat presented in 

Fig. 1. The satellite GNC system includes on-board 

propulsion, magnetorquers, reaction wheels and attitude 

determination sensors. Laser range finder and optical 

sensor measurements are used for the relative 

navigation. It is assumed that the maneuver commands 

to the CubeSat to approach to a vicinity of debris are 

uploaded from the ground control centre. However, 

when the distance becomes less than 1 km the 
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disturbances caused by J2, atmospheric drag and 

manoeuvre execution errors can lead to dangerous 

proximity and even to collision with debris during the 

time interval between the two communication sessions. 

To provide necessary stabilization to the debris 

direction for the laser range finder measurements it is 

necessary to obtain optical sensor measurements 

available only for the illuminated part of the orbit. 

 

 
Fig. 1. 3D CAD model of 3U spacecraft 

2. Far-range rendezvous strategies 

Space rendezvous with respect to mission design can 

be accomplished by means of different proximity 

strategies. Here some different optimal approaches to 

rendezvous trajectory design are discussed, more over 

the weakness and advantages of each method is studied.  

The debris and spacecraft are in orbits with different 

inclination and semi major axis. The constant electric 

thruster of the spacecraft liquidate desired impulsive 

manoeuvres. Here the question rises about superiority of 

low and constant thrust rendezvous strategies.  

The orbital manoeuvre is prior to rendezvous. There 

are different kinds of orbital manoeuvres such as 

impulsive and low thrust manoeuvres. In this scheme 

the aim is to study some different algorithm for optimal 

proximity manoeuvres [1]. Has done a worthy study on 

impulsive orbital trajectories. Alongside him in 

literature, [2] introduced some methods for low- 

constant thrust proximity manoeuvres using equinoctial 

orbital elements. Here some of the most common 

approaches to rendezvous problem is discussed.  

. 

3.1 Control based on State dependant Riccati equation 

SDRE method is a nonlinear suboptimal control 

approach to obtain the minimizing solution of the 

quadratic regulator cost function [3]. By solving the 

algebraic Riccati equation which is state dependant in 

each time step the optimal control will be gained. In this 

method the dynamical system must be factorized. This 

method is studied by authors in space rendezvous and 

docking [4], [5].  For rendezvous phase the nonlinear 

form of relative translational equations of motion 

represented in [4] will be used. 

The nonlinear dynamical factorized system has the 

following form: 
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The resulted Riccati equation is given by: 

 

 
       

           1 0

T

T



  

P x A x A x P x

P x B x R x B x P x Q x
 (3) 

And the optimal control will be: 

      1 T R B x P xu x x  (4) 

It is shown that the optimal coefficients P  can be 

achieved solving algebraic Riccati equation. Choosing a 

quadratic cost function in this from containing tracking 

term and fuel term is logical. However as the thrusters 

are electrical the second term does not play an important 

role and the weighting matrix R  can be chosen as little 

as possible or can be nullified completely. In SDRE 

case control constraint are applied to the algorithm as 

well. Here SDRE algorithm produce the optimal 

coefficients and produce optimal control then this 

optimal control is normalized and multiplied by the 

thruster amplitude to satisfy the low-constant thrust 

value of controller. The problem formulated as follows: 

  
0

1

2

specified

fixed

: unspecified

: low constant.

T T

f

J

tf

t

 







 x Qx u Ru

x

x

u

 (5) 

 

3.2 Thrust as orbital perturbation 

The other way  to accomplish proximity is to consider 

low thrust as a perturbation to motion and by changing 

the direction of the constant thrust the desired orbit will 

be achieved which is studied in [6] [7] [8] .In this case, 

the Gauss orbital equations for orbital elements can be 

used: 
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And the directions of thrust are shown as: 
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The angles ,    and orbital elements are shown in Fig. 

2: 

 
Fig. 2. Orbital elements, Inertial reference frame 

( ˆˆ ˆIJK  ), body-fixed radial-circumferential-normal 

( ˆˆ ˆrnc ) and angles ,   

By taking derivatives with respect to thrust angles 

,  , the maximum changes of orbital elements rates 

will be found. Here the strategy is to compensate 

inclination and semi-major axis in a sequence to reach 

the target orbit. With this method it’s impossible to 

achieve the target true anomaly in a planar motion. But 

it can be shown that with a high accuracy semi major 

axis and inclination can be changed separately without a 

considerable change in other orbital elements. From the 

first and the third of (6) can find out:  
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For maximum rate of semi major axis, and: 
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Stands for inclination change which shows a normal to 

orbit thrust direction. The above-mentioned problem is 

summarized to: 
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3.3 Minimum principle 

A third approach is to solve the optimal control 

problem as a boundary value problem using maximum 

principle of Pontryagin. The minimum time coast 

function and the linear appearance of controls in 

Hamiltonian will lead to a bang-bang control [9]. Here 

the minimum fuel problem is considered and the 

minimum time will be addressed using dynamic 

programming. The similar minimum fuel with bounded 

control is solved in [10]. Considering performance 

measure and problem formulation of the form: 
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Recalling that here can take A ((1)) as a linearized form 

for simplicity which is addressed as Clohessy-

Whiltshire equations: 
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For this system Hamiltonian is: 
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Using conditions for optimality and(13): 
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Leads to optimal controls as follow: 
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Having Hamiltonian (13) the co-states are as follow: 
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(12) and (16) are a set of 12 ODE. The problem will 

be solved having 12 boundary conditions for states and 

one additional for a co-state as a result of unknown final 

time.  The unconstraint form of problem can be solved 

for the boundary values and corresponding co-state 

boundary condition [9]. 

 

3.4 Nonlinear programming (NLP) 

Here some direct methods are used to solve the 

optimal control problem using NLP.by direct it means 

that first the system is discretised and then the optimal 

solution is approximated or found. we are going to 

mention two effective way of solving this problem using 

TOMLAB [11] and JModelica [12] [13], [14]. 

TOMLAB is a commercial program can be used to 

solve optimal control problems in MATLAB. 

TOMLAB supports optimal control in PROPT [15]. 

PROPT uses a pseudo spectral Collocation method for 

optimization. JModelica is an open source environment 

uses allocation method to solve optimal control 

problem.  

Both solvers need initial and final conditions. 

Moreover an initial guess is to be provided. Both 

JModelica and TOMLAB are initialized with linear box 

constraint on controls. In these expression of dynamics 

the module of control vector is constant. Consequently 

to initialize solvers with proper control constraint a 

transformation must be performed. Each moment of 

time the control vector is: 
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The equation (17) shows a geometrical constraint 

which represent a sphere. The accessible controls are on 

the surface of this sphere.  In this case a spherical 

coordinate transformation gives two independent angles 

,  . These two angles are used to form solvers box 

constraints. In real case these angles must be expressed 

with respect to body frame, which can be achieved 

using a transformation between body frame and LVLH. 

Finally the time optimal constraint problem has the 

following form: 
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4. Results of application of manoeuvre algorithms 

In this part the simulation results are presented. The 

spacecraft located in an orbit which its semi major axis 

has 5km deviation from semi major axis of the target’s 

orbit. The difference between inclinations of orbits is 5 

deg. The spacecraft translational motion is controlled 

using electrical thrusters limited to 0.00035 N. the 

specific impulse is 4000s and the satellite weight is 

assumed to be 3 kg. 

The different scenarios are modelled and compared. 

Considering the simulations has different performance 

measures and the approach to solve them. First SDRE 

for quadratic cost function is solved with constraint 

controls. After that the perturbation constant low thrust 

is modelled. The SDRE will lead to the following 

infinity shape relative path. This closed-shape orbit is a 

well-known formation relative orbit. SDRE control 

gradually makes it small to the rendezvous point or any 

specified distance from the target 

 

Next the inclination and semi-major axis changes are 

simulated. The two corresponding perturbation 

Fig. 3. Relative trajectory using SDRE 
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Gaussian equations for ,a i  with optimal control are 

shown in Fig. 4. As mentioned the changes of other 

orbital elements are neglectable. Fig. 5 shows the 

corresponding thrust angles with respect to body-fixed 

radial circumferential-normal. Compensation of 

inclination and semi major axis are separately and 

uncoupled. 

 

 

The trajectory of the minimum fuel problem using 

minimum principle is shown in Fig. 6. At the beginning 

the relative distance increases and then it decreases. 

Fig.7 shows the unbounded low thrust to achieve such a 

spiral-conic relative orbit. 

 

 

 

Here the simulations which are conducted by 

TOMLAB and JModelica are displayed in Fig.8-11. 8 

shows the 3D relative trajectory to target in TOMLAB 

and Fig. 9 express the thrust angles in local spherical 

coordinate system attached to LVLH. The analogous 

results in JModelica in Python 2.7 are displayed in Fig. 

10 and Fig.11. 

Fig. 4. Inclination and semi major axis change 

using Gaussian perturbed equation 

Fig. 5. Control angles of thruster using Gaussian 

perturbed equation 

Fig. 6 Relative trajectory of BVP using optimal 

principle 

Fig. 7. Controls of BVP using optimal principle 
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By using Table 1 it’s easy to compare the 

effectiveness of the studied algorithms and chose the 

suitable with respect to mission design and 

requirements. As electrical thrusters are used the fuel 

consumption is not of a great importance. The 

rendezvous time can be compromised as well. The run 

time and required memory play an important role in 

choosing the proper strategy and solving method. 

JModelica shows more applicable for real time missions 

to solve the exact minimum – time problem with less 

required computational resources. 

 

Table 1. Comparison of different rendezvous 

strategy and methods 
 Problem 

kind 

Run 

time, s 

Mem

ory, 

MB 

time, 

 hr 

Fuel 

consum

ption, 
kg 

SDRE NQR-

constrained 

135 4 5.5 3.7e-3 

Minimum 
principle 

Min-fuel-
unconstrain

ed 

78 149 1.7 2.4e-3 

Thrust as 
perturbation 

Min-time-
constrained 

2 9 56 2.1e-3 

TOMLAB Min-time-

constrained 

194 242 5.8 2.3e-4 

JModelica Min-time-
constrained 

21 201 2.3 3.1e-5 

5. Laboratory facility description 
Laboratory facility COSMOS (COmplex for 

Satellites MOtion Simulation) consists of the 

microsatellites mock-ups (Fig 12) placed on the air-

bearing table, industrial fan and its control unit, and air 

supply system (Fig 13) [16–18]. The air bearing table 

includes the flat perforated aluminum surface and 

special cavity underneath where the air builds up. The 

surface of the table consists of two one-cm thick plates. 

The plates are fixed by a special frame that prevents 

bending due to the weight of the plates and excessive 

Fig. 8. Relative trajectory using PROPT in 

TOMLAB environment 

Fig. 9. Relative positions and control angles using 

PROPT in TOMLAB environment 

Fig. 10. Relative trajectory using JModelica 

Fig. 11. Relative positions and control angles using 

JModelica 
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pressure. The resulting surface unevenness is about 3.5 

mm. The total surface area is 198 by 148 cm. The 

surface has the pattern of 1 mm diameter holes with 20 

mm intervals. The distance between the holes is chosen 

to provide almost frictionless motion for 30 cm diameter 

mock-up of up to 6 kg mass. The mock-ups have the 

shape of an octagonal prism of 40 cm height. Each side 

has mounting holes that allow hardware installation 

both inside and outside. 

The mock-ups are based on the Orbicraft and 

Orbicraft-pro construction kit developed by SputniX Ltd 

[19]. The mass of the bigger mock-up is about 5.2 kg, 

the axial moment of inertia is about 0.05 
2kg m , the 

mass of the CubeSat-based is about 1.1 kg, the axial 

moment of inertia is about 0.01 
2kg m . Control 

system imitator includes: 

 on-board computer Raspberry PI 2 B; 

 power supply system (battery and power 

management unit); 

 set of sensors: magnetometer, Sun sensors, 

angular velocity sensor, accelerometer; 

 set of actuators: reaction wheel, four 

propellers for the thruster imitation; 

 data exchange system; 

 on-board camera; 

 Wi-Fi module. 

There is a special mark on top of each mock-up. The 

position and attitude of the mock-up is determined using 

external video camera data processing. This information 

is transmitted via Wi-Fi channel to the on-board 

computer. It is then used to generate a control 

command. In case of autonomous attitude and position 

determination, the video camera is used as an 

independent external motion determination system. 

The test-bench disturbances were estimated 

experimentally. Preliminary experiments showed that 

the air flow from the holes is stationary, i.e. does not 

vary with time, but rather depends on the location on the 

table surface. Disturbances acting at some point of the 

table are almost stationary. So a map of forces and 

torques acting on the mock-up on the surface of the 

table may be constructed. This map was constructed by 

processing the information of the free motion of the 

mock-up. External video state determination system was 
used. Linear and angular accelerations of the 

mock-up were estimated. 

 
Fig.12. Nanosatellite mock-ups 

 

 
 

Fig. 13. Test facility COSMOS at the Keldysh 

Institute of Applied Mathematics 

6. Controlled motion for debris 

observation 
Consider the space debris and active satellite on the 

near circular orbits. For a long observation it is 

reasonable to choose a natural closed relative orbit. 

Such an orbit can be obtained using Clohessy-Wiltshire 

equations which has the following form: 

 2

2

2 ,

,

2 3

x z

y y

z x z





 

 

 

 

 (19) 

where 
2 1 ( , , )x y z  r r r  is the relative state vector 

in the orbital reference frame moving in the circular 

orbit with orbital angular velocity  . The solution of 

(19) is  
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where the constants 51 2 3 4 6, , , , ,C C C C C C  are defined 

by the initial conditions. In the common case the 

trajectory is elliptical spiral. The term responsible for 

the relative drift is 
13С t . The relative trajectory of 

two satellites is closed if and only if 
1 0C  . However, 

ideal initial conditions for a closed free motion cannot 

be achieved and it lead to slow change of instant ellipse 

position. To stop the drift the following Lyapunov-

based control along the x-axis can be applied: 

1 , 0xu kC k    (21) 

Consider the case when the active satellite observe 

the debris staying at the negative part of the x-axis. 

Assume that the observing sensors requires the maximal 

distance of 
maxR . So, this value should not be achieved 

by the instant position of the ellipse in the case of zero 

drift is 
4C a , where 2 3a C C   is the major 

semi axis of the ellipse and 
4C  is instant position of the 

center of the ellipse along x-axis. Form the other hand 

in the observing stage the dangerous distance is also can 

be set as 
minR , where the collision with debris is 

possible. The closest distance can be calculated as 

4C a . To avoid the collision the bang-bang control 

can be applied. For the impulsive thrust the algorithm 

can be described as follows: 

1 4 min

1 4

2 / ,

/ ,
x

safe

C dt if C a R
u

C dt if C a R





  
 

  
 (22) 

When the dangerous distance is reached, the control 

changes the sign of the relative drift constant 
1C  and 

the relative distance is increasing. When the distance 

reaches a safe distance safeR  that is less than 
maxR  the 

drift is stopped by the second impulse. The similar 

approach can be applied if the satellite distance is 

approaches the maximal value maxR  that is not suitable 

for the debris observation. 

Such a control scheme is quite simple but it is 

reliable and robust. The most crucial problem in the 

observing stage if the relative motion determination. 

Assume that the active satellite equipped with laser 

range finder and the optical sensor for the pointing. The 

measurements of the laser range finder provide the 

distance to the debris and the optical sensors measures 

the unit vector direction angles in the orbital reference 

frame. This measurements are processed by the Kalman 

filter algorithm which estimate the 6-th dimensional 

state vector – relative position vector and relative 

velocity. Using this estimations the semi axis a  and 

relative shift 
4C  can be calculated. Since the optical 

sensors cannor measure in the shadow part of the orbit 

the current state vector is obtained by the integration of 

the motion equations using last obtained state vector. 

Since it is calculated with errors the covariance matrix 

can be used to calculate the error ellipse of the current 

and expected state vector. 

Such a scheme of the motion of the active satellite 

for debris observation is implemented numerically. Fig 

14 shows the relative trajectory of the active satellite, 

debris, dangerous distance and error ellipsoid. The 

relative position errors can be seen from Fig 15. The 

increase of the error is caused by absence of the 

measurements in the shadow part of the orbit. The 

relative distance is demonstrated at Fig 16. Initially the 

relative drift result in decreasing the distance but at the 

dangerous distance the impulse was applied and the 

satellite started drifting with another sign. When the 

safe distance was achieved the second impulse stopped 

the drift and the ellipse become almost closed. 

 
Fig. 14. Relative trajectory of the active satellite at 

the debris observation stage 

 
Fig. 15. Relative position estimation errors 
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Fig. 16. Relative distance 

 

The proposed scheme was tested using laboratory 

facility. One of the mock-ups is fixed on the table, the 

other is imitating active satellite. The orbital free motion 

is considered only in the orbital plane since the out-of-

plane motion is always bounded that is suitable for the 

observation. The free orbital motion trajectory is 

calculated according to the orbital initial conditions and 

tracked by the on-board control system. Fig 17 shows 

the relative trajectory of the active mock-up relative to 

the debris mock-up. Initially trajectory has a drift 

towards the debris mock-up. At the dangerous distance 

of 0.4 m the collision avoidance manoeuvre was applied 

that changed the drift sign and the distance increased 

after two revolutions. After reaching the safe distance of 

1m the drift was stopped by the second impulse as one 

can see on Fig 18. During the relative motion the laser 

range-finder imitator was pointed towards the debris. 

Fig 19 shows the required pointing angle and 

implemented by the control system. Its difference does 

not exceed 3-4 deg. 

 
Fig 17. Trajectory of nanosatellite mock-up on air table 

 

 
Fig. 18. Relative distance 

 
Fig. 19. Pointing angle:  

required and implemented 

 

Thus, the simple relative motion control for debris 

observation is proposed and successfully tested on the 

air-bearing table. The orbital motion is imitated on the 

table only partly and the achieved accuracies will be not 

the same for the intended mission, nevertheless it 

demonstrates the controlled motion scheme 

implemented in hardware. 

 

6. CONCLUSIONS  

The proposed algorithms for controlled motion for 

space debris observation and for capturing using 

artificial potentials are successfully tested using 

laboratory facility on the air-bearing test-bed. The 

scheme of the collision avoidance at the stage of debris 

observation is simple and easy for implementation. The 

most critical part for implementation of this relative 

motion scheme is relative state vector estimation. The 

proposed algorithm based on extended Kalman filter 

provides an estimation using laser range finder 

measurements. Its errors are taken into account in 

relative distance calculation. 
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