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Abstract 

The paper is devoted to the study of decentralized control with the use of differential lift and drag for 

constructing satellite formation flying in the shape of a required configuration. Each satellite in the formation is 

equipped with a sunlight reflector. In the appropriate lighting conditions such formation can be visible from Earth 

and provide graphic images in the sky. The paper studies the possibility of achieving a defined image configuration 

of the formation by decentralized aerodynamic-based control implemented via the sunlight reflectors' attitude 

relative to upcoming airflow. 

 

1. Introduction 

Small satellite formation missions have long been 

considered for various important applications where a 

large number of satellites serve as distributed 

instruments for atmospheric sampling, construct a 

distributed antenna platform, make a distributed 

aperture for imaging, etc. We study the design and 

evolution through time of small satellite formations 

comprising a number of spacecraft equipped with drag 

sails, that can be employed as sunlight reflectors. In the 

appropriate lighting conditions such formations, given 

the right attitude of the sails’ reflecting surfaces, can be 

visible from Earth and provide graphic images in the 

sky. The formations can thus function as space media 

broadcasting logos or messages.  

Preliminary feasibility studies [16] showed that such 

formations can be deployed using 12U CubeSats with 

2x2m2 sails under suitable lighting conditions in a Sun-

synchronous orbit. The minimum distance between two 

reflectors should be greater than 600m to be discernible 

by the human eye. If the attitude of the image is fixed in 

the orbital reference frame, it requires continuous 

control by onboard thrusters and leads to excessive fuel 

consumption. Another approach is to have the image 

rotating in the orbital reference frame with an orbital 

period. Each satellite can be appointed such initial 

conditions that it moves along a circumference in the 

orbital reference frame, so that each “pixel” in the 

image rotates with the same angular velocity without 

control according to the orbital dynamics. However, the 

control is required to achieve the relative trajectories. 

The paper studies the possibility of achieving a 

defined image configuration of the formation by 

decentralized aerodynamic-based control. Each satellite 

is assumed to be equipped with an attitude control 

system. It allows changing the cross-section area and 

the attitude of the reflector relative to the incoming 

airflow, so the differential drag and lift forces appear. 

The satellites have an onboard navigation system and 

exchange information on the relative motion via an 

inter-satellite communication link. The required attitude 

is calculated for each satellite according to the 

difference between the actual and required relative 

motion. The final attitude of the reflectors and the 

attitude of the image satisfies the observability 

requirements. 

The control approach based on the differential drag 

force was firstly proposed in 1980s by Leonard [1] 

under the assumption of a discrete change in the 

effective cross section of satellites flying in the group. 

He developed a control algorithm based on the 

proportional-differential controller. A large number of 

papers showed application of a variety of the different 

control algorithms using differential drag: PID 

controller [2], linear-quadratic regulator [3], Lyapunov-

based control [4,5], sliding mode control [6], optimal 
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control [7] etc. However almost all these studies 

consider only two satellites in formation flying with 

application of the centralized control approach. A few 

papers are devoted to differential drag control of the 

multiple satellites. The cyclic and optimal control 

strategies for a cluster flight with more than two 

satellites are proposed in the paper [8]. Stability and 

performance of cluster keeping while avoiding 

collisions are studied in [9]. 

These papers considered only the aerodynamic 

differential drag application. Some recent papers take 

into account the differential lift as well. The application 

of the differential lift along with the drag for the small 

satellites rendezvous problem was first proposed by 

Horsley et. al. in [10]. Authors used the aerodynamic 

drag and lift forces model based on Sentman's treatment 

in the free molecular flow conditions [11]. Control 

strategy developed in [10] is based on the bang-bang 

approach when only the maximum values of the lift and 

drag are used. Paper [12] investigates some practical 

aspects of the trajectories proposed by Horsey et.al. and 

the collision risks during the rendezvous. The same 

model of the differential lift and drag is used in [13,14] 

where the neural-network-based sliding-mode adaptive 

controllers are proposed. Paper [15] addresses the 

problem of the satellite formation keeping by the 

differential lift and drag under the J2 perturbation. In the 

papers cited above the lift force is perpendicular to the 

satellite velocity vector. The drag and lift coefficients 

depend on a set of atmosphere parameters and satellite 

attitude according to the used model. Here the 

simplified model of the aerodynamic force is used. The 

specific attitude is calculated with the goal to provide 

the required force in the end. 

 

2. Preliminary study 

 

Our preliminary study [16] was focused on 

designing a mission of CubeSats, equipped with 

reflectors and coordinated in a formation to produce in 

the sky a graphical image, which is seen from a given 

point of interest (POI) on Earth. The formation is 

deployed in LEO and the sunlight reflecting surfaces act 

simultaneously as solar sails and drag augmentation 

devices, and therefore can be employed to control the 

relative positions of satellites in the formation. 

It is important to introduce a formal understanding 

of what is understood by “visibility”. In theory, human 

eye can distinguish a star with a magnitude of 6 in the 

clear sky at night. Adding a few geometrical 

considerations, we define visibility by the set of 

conditions below: 

 (1) the satellite should be in the direct line of 

vision from the POI; 

 (2) the satellite should be lit by the Sun in 

order to be able to reflect the light to the 

ground; 

 (3) the Sun must be below some established 

low elevation as seen from the POI. In this 

work, the limit is set to 5 degrees of elevation; 

 (4) the spacecraft must be in the darker part of 

the sky when it passes, so the angle between 

the directions from the POI to the Sun, on one 

hand, and the satellite on the other, should not 

be less than a certain value, which was in this 

case set to 25 degrees; 

 (5) the pixels must be clearly visible for the 

naked eye, and the message should be 

readable. In this work, this is defined by 

requiring the magnitude of -8.0 or better (the 

magnitude of the well known Iridium satellite 

flares varies between -8.0 and -9.5). 

 

For a mission where it is required that the satellite 

appears above a given point on the ground at given 

times, it is essential to make sure that the orbit is such 

that the satellite is indeed observable and visible. The 

set of mission requirements and assumptions leave us 

with a narrow set of points in time and orbital position 

where the demonstration is possible. Thus the chosen 

strategy was to align the orbit with the terminator line 

(or make the orbit cross the terminator line over the POI 

if there is there is just one such point). In the case of 

multiple POIs, if the orbit remains in accordance with 

the terminator, the amount of views is more stable and 

easily controlled by selecting the correct LTAN. As the 

terminator line moves in the inertial frame in 

accordance with the Sun, the orbit of interest is, of 

course, a Sun-synchronous one (SSO). 

 
Fig.1. The reference frame associated with the point O  

moving along the circular orbit 

 

For payload design let us consider a single satellite 

with a large sunlight reflector orbiting the Earth (Fig. 1). 

The scattering angle   is the included angle of the Sun 

measured from the Earth, d is the distance between 

reflector and ground spot, rA  and gsA are the areas of 

the CubeSat reflector and the ground spot respectively. 
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The magnitude of the reflector is usually calculated 

as the ratio of incident light intensity to a reference 

intensity: 

2.5log( / ),refm I I   

The intensity of the light at the POI is given by: 

 2 2

0 cos sin 4 tan ,
2

rI I A d


   

where 2

0 1360 W/mI   is the average intensity of solar 

energy at the Earth distance,   is the mirror reflectivity 

coefficient,   is the incident angle of solar rays,   is 

the elevation angle of the satellite;   is the atmospheric 

transmissivity: 

  0.3878sec
0.1283 0.7559 .e

 


 
   

Thin Mylar film coated with aluminum is chosen as 

the reflector material because of low weight and high 

reflectivity coefficient  0.92 .   Mylar solar sails 

have been tested in space missions. The reflector, which 

is deployed and maintained by a rigid support structure, 

is assumed to be of square shape. 

Let us now estimate the size of the reflector 

necessary to ensure the required magnitude. Given light 

intensity and orbit altitude, one can express the reflector 

area rA  as a function of angles   and  . The extreme 

values of these two angles (yielding the maximum 
rA ) 

are min 30   (see conditions 3 and 4) and 
max 60 

(see conditions 2 and 3). Hence, we obtain the 

characteristic linear size of the reflector in the range of 

2-2.6 m for SSO altitudes of 600-800 km. Seeing the 

need to pack the solar sail material along with the 

supporting beams into the CubeSat structure along with 

all other necessary satellite subsystems (including 

attitude control and propulsion units), we come to 

choose the 12U as a suitable CubeSat size for the 

designed formation. The total mass of each CubeSat is 

estimated to be 18 kg. 

Let us recall now that our task is to produce a pixel 

image, which means that the distances between any two 

CubeSats in the formation must be such that they are 

distinguished as independent pixels. Human eye 

resolution is known to be about two arc-minutes, which 

for the specified SSO altitudes yields the minimum 

distance between satellites in the formation ranging 

from 625 to 812 m. The quality of the image is still 

acceptable when the relative positions errors do not 

exceed 30 m, which is well within the range of on-board 

GPS-module position determination. 

The study [16] was principally focused on 

maintaining a constant formation flying along the 

terminator, which certainly requires heavy use of 

propulsion. The attempts to use the differential drag 

control to decrease the use of fuel showed that any 

significant difference in the fuel consumption (if aided 

by the differential drag) can be achieved at very low 

orbits with altitudes within 300-400 km. 

The study proposed in this paper aims at obtaining a 

formation without use of any kind of propulsion. Hence, 

the orbit altitude used in the subsequent simulations is 

chosen to be 350 km. Our test simulations showed that 

even for such low orbits in order to speed up the control 

algorithm's convergence it is required to have a larger 

reflector than what our parametric model  [16] yields. 

Thus, we arrived at the reflector's size 4x4 m, which 

allows constructing the required formation in about 30 

hours. Discarding propulsion also means that we cannot 

hope to maintain the constant geometry of the 

propulsion. Instead we will devise certain reference 

trajectories, in which all the satellites in the formation 

move, so that the image can be seen in the correct 

orientation just once per orbit. A natural point of interest 

for this study is Washington DC and the time of the 

image display corresponds to the IAC-19 report time. 

 

3. The problem statement  

 

The problem of the satellite formation deployment 

after their separation from the launcher is considered, 

i.e. achieving the defined relative trajectories is required 

when each satellite is moving to form a specific flat 

image. It is assumed that each satellite is aware of the 

relative motion of all other members of the group. This 

information can be obtained either via an inter-satellite 

link or using autonomous relative motion determination 

system (range finders, optical sensors, etc.). 

Initially, the satellites move in accordance with the 

specified initial conditions after the launch from the 

dispenser. The launch of the satellites is carried out 

using a certain launch system (usually with the help of 

special springs), and the system has execution errors. In 

the absence of control, it leads to a gradual increase in 

the distances between the satellites. In this paper, we 

suppose a formation launched into LEO. It is assumed 

that each satellite is equipped with an attitude control 

system, for example, reaction wheels-based system. So, 

the satellites are able to be controlled by the 

aerodynamic force, which depends on the attitude of 

satellite relative to the incoming airflow. In the paper 

the 12U CubeSats equipped with 4x4m sunlight 

reflectors are considered. 

The main goal of the work is development of such a 

decentralized control of satellites, which leads to the 

formation of a required configuration. Linear quadratic 

regulator (LQR)-based control is applied for the task. It 

is assumed that each satellite is controlled 

independently from the others in decentralized 

approach. 

 

3.1 Controlled Motion Equations 
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Consider a simplified instance of a formation 

consisting of two satellites in near circular orbits. The 

general form of the equations of the relative motion of 

two satellites is too complex for analytical 

consideration, so the Hill-Clohessy-Wiltshire equations 

[17,18] are used. This model describes the relative 

motion of two satellites flying in the near circular orbits 

in the central gravitational field. The orbital reference 

frame is used, its origin (reference point) moves along 

the circular orbit of radius 
0r  with the orbital angular 

velocity 3

0r  , where   is the Earth 

gravitational parameter. Axis Oz  is aligned along the 

vector from the center of the Earth to the reference 

point, Oy  axis is directed along the normal to the 

orbital plane, Ox  axis complements the reference frame 

to the right-handed one (Fig.2).  

 

 
Fig.2. The reference frame associated with the point O  

moving along the circular orbit 

 

Let ( , , )i i i ix y zr  and ( , , )j j j jx y zr  be the 

vectors of the conditional i-th and j-th satellites in the 

orbital reference frame, i j , 1,...,i N , 1,...,j N , 

where N  is the number of the satellites in the formation. 

Then the components of the relative position vector 

( , , )ij j i ij ij ijx y z  r r r  are governed by the following 

equations  

 

2

2

2 ,

,

2 3 ,

ij

ij ij x

ij

ij ij y

ij

ij ij ij z

x z u

y y u

z x z u





 

  


 


  

 (1) 

where / ,ij ij mu Δf ij j i Δf f f is the difference 

between the aerodynamic drag forces acting on the i-th 

and the j-th satellites, m  is the mass of a satellite that is 

the same for all satellites in the group. In the case of 

free motion, i.e. if 0ij Δf , the exact solution of (1) is  

1 2 3 4

5 6

1 2 3

( ) 3 2 cos( ) 2 sin( ) ,

( ) sin( ) cos( ),

( ) 2 sin( ) cos( ),

ij ij ij ij

ij

ij ij

ij

ij ij ij

ij

x t C t C t C t C

y t C t C t

z t C C t C t

  

 

 

     


 


  

 

where 
1 6

ij ijС С  are constants that depend on the initial 

conditions at 0t  : 

1 2 3

4 5 6

(0) (0) 2 (0)
2 (0), , 3 (0) ,

2 (0) (0)
(0) , , (0).

ij ij ijij ij ij

ij ij

ij ijij ij ij

ij ij

x z x
C z C C z

z y
C x C C y

  

 

    

   
 

The term responsible for the relative drift is 
13 ijС t . 

Thus, the relative trajectory of two satellites is closed if 

and only if 
1 0ijC  . However, in practice such an ideal 

initial conditions for free motion cannot be specified, 

and in the case of perturbations and nonlinear effects 

there is always a relative drift between the satellites. 

 

3.2 Aerodynamic Force Model 

The physical processes of the interaction of the 

atmospheric particles with the satellite’s surface are 

complex. However, one may construct a fairly simple 

model of these interactions using a limited number of 

empirical coefficients. Assume that the interaction 

proceeds mechanically through two schemes – a mirror 

one, when the reflection of the molecule from the 

surface is absolutely elastic, and diffuse one in the case 

of an absolutely inelastic collision. Define the actual 

reflection as a linear interpolation of these two 

interaction schemes, assuming that a certain part of the 

molecules   are mirror-reflected, and the rest (1 )  

part is reflected inelastically with the Maxwell 

distribution corresponding to the temperature 
rT . In this 

case [19] the expression for the aerodynamic force 

acting on the reflector is 

 

2 21
(1 )( , ) 2 ( , ) (1 ) ( , )i V i V V i i V i iV S

m V


   

 
      

 
f e n e e n n e n n . (2) 

 

In (2),   is the atmosphere density, m  is the satellite 

mass, V  is the airflow velocity, S  is the reflector's 

area, 
in  is the unit vector normal to the reflector, 

Ve  is a 

unit vector directed along the velocity of the incoming 

airflow, / 2rRT   is a parameter proportional to 

the most probable thermal velocity of the diffusely 

reflected molecules, R  is the gas constant, 1,...,i N . 

The first term in (2) determines the aerodynamic drag 

force directed against the velocity of the air flow. The 

second and the third terms, which define the lift force, 

are force components directed against the normal
in . In 

the aerodynamic force model (2) there are two 

interaction parameters,   and /V  . Generally, 

they are not constant and depend on the angle of attack, 

the velocity of the incident particles and other 

characteristics of the flow and the surface. However, in 

this paper we consider some average values of the 

Earth 
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parameters   and  , and it is assumed that they are 

constant and do not depend on the attitude. In [19], the 

inverse problem was solved to determine these 

parameters using the flight data of the motion of the 

Proton satellites. According to these estimates the 

interaction schemes of the gas with the satellite surface 

in LEO are such that 0.1   and 0.1  . This force 

model is firstly used for formation flying control in [3]. 

Let us rewrite the expression for the force 

components (2) using angles   and   representing the 

normal vector to the reflector's surface (see Fig. 2) 

sin

cos cos

cos s in

i

i i i

i i



 

 

 
 


 
  

n . 

The angle   is chosen so that the aerodynamic force 

does not act on the satellite when 0  . [0; / 2]  , 

if 0   then the other side of the reflector may be 

considered. Angle [0,2 )  . 

 

 
Fig.3. Angles defining the reflector's normal vector 

 

The vector of incoming airflow is  1 0 0
T

V e  

in the orbital reference frame. Substituting the values of 

in  and 
Ve  in the expression (2) of aerodynamic force, 

 3 22 (sin ) ( 1)(sin ) 1 sin

cos sin ( 2 sin )cos

cos sin ( 2 sin )sin

i i i

i i i i i

i i i i

k

      

      

      

     
 

    
    

f  

where 21
k V S

m
 . Defining 

 3 2
( ) 2 (sin ) ( 1)(sin ) 1 sini i i ip              , 

( ) cos sin ( 2 sin )i i i ig           , 

the expression for the aerodynamic force is simplified: 

 

 

 

cos

sin

i

i i i

i i

p

k g

g



 

 

 
 

  
 
 

f . (3) 

From (3), one can see that the Ox  component of the 

aerodynamic force depends solely on the   angle. The 

projection of the force on the plane Oyz  is defined by 

the function ( )ig   and its attitude is determined by the 

angle  . The functions ( )ip   and ( )ig   are presented 

in Fig. 3 for 0.1   and 0.1  . The maximum value 

of 
xf  component of the aerodynamic force is achieved 

at 90   degrees (in the case when 1.2p  ), i.e. when 

the reflector is perpendicular to the incoming airflow. 

The maximum projection of the force on the Oyz plane 

is smaller by an order of magnitude. It is about 

0.12g   at 52   deg. Besides at 0   and 90   

deg. the function g  equals zero. It means that the 

application of the force in the plane Oyz  is possible 

only in the case of nonzero and non-maximal force 

along the axis Ox . 

 
Fig.4. Components of the aerodynamic force with 

respect to angle   

 

The paper considers the satellite relative motion 

control, so it is necessary to use the difference in the 

aerodynamic forces acting on two satellites, 

   

   

   

1 2

1 2 1 1 2 2

1 1 2 2

cos cos

sin sin

p p

k g g

g g

 

   

   

 
 

     
  

f f f .      (4) 

Thus, the differential aerodynamic force is defined by 

the four angles 
1 2 1 2, , ,    . The value of the force 

projection on the plane Oyz  is small as one can see 

from Fig. 3. So it better be maximized by setting 

2 1    , i.e. the satellites rotate in opposite 

directions around Ox  axis. In this case the value of 

yzf  component is defined by 
1 2( ) ( )g g  , 

   

    
    

1 2

1 2 1

1 2 1

cos

sin

p p

k g g

g g

 

  

  

 
 

   
 

  

f . (5) 

The maximum value of yzf  is twice the value of 

the projection of a single force in Fig.3. This is implied 

by the dependence of the differential aerodynamic force 

 

 

 

x  

y  

z  

n  

  

  

Reflector 
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f  components on the angles 
1 2and   in Fig. 4. The 

acceptable control region in the dimensionless 

components of f  is shown in Fig. 5. Since the attitude 

of the vector component yzf  in the plane Oyz  is 

defined by the angle 
1 [0,2 )   it is necessary to 

rotate the area shown in Fig. 5 around the Oy axis to 

obtain the acceptable control region in three dimensions. 

 
Fig.5. Functions    1 2p p   and    1 2| |g g   

 
Fig.6. Acceptable control region 

 

4. Control algorithm 

Consider an application of the LQR regulator to 

track the predefined relative trajectory. This control 

algorithm is quite simple to implement in the case of 

two satellites in the group, but in the case of N satellites 

an additional decentralized control rule is needed. In 

this section an LQR is constructed and the decentralized 

approach is proposed. 

 

4.1 LQR Construction 

Rewrite (1) in the matrix-vector form 

A B x x u  (6) 

where [ ]T T Tx r v  is the state vector, A  is the 

dynamic matrix 

3x3
0 E

A
C D

 
  
 

, E  is the identity matrix with size 3x3,  

2

2

0 0 0

0 0

0 0 3

С 



 
 

 
 
  

, 

0 0 2

0 0 0

2 0 0

D





 
 


 
  

,  

B  is the control matrix  

3x3
0

B
E

 
  
 

, 

i j u u u  is the control vector. For a formation 

controlled by differential aerodynamic force the control 

vector / m u f . 

The desired relative motion corresponds to the free 

motion of the system described by the equation 

d dAx x  

where 
dx  is the desired state vector. Then one can 

obtain linear equation of the dynamics of the deviation 

from the desired trajectory 

A B e e u , (7) 

where [ ]T T T

d e x x . 

Linear quadratic regulator is the feedback control 

Ku e  which ensures the minimum of the functional 

0

= (  +  )T TJ Q R dt



 e e u u  (8) 

along the trajectory [20]. Here ,Q R  are the positive 

definite matrices that determine the weight of errors for 

the state vector and the weight of the control resource 

consumption respectively. 

The feedback minimizing the functional is 

determined by the equation 
1 TR B P u e , (9) 

where the matrix P  is obtained as a solution of the 

Riccati equation 
1 0.T TA P PA PBR B P Q     (10) 

The Riccati equation (10) can be solved to obtain the 

matrix P  if the weight matrices Q  and R  are known. 

Then the control vector u  is calculated according to (9) 

using the current vector of the trajectory deviation e . 

The matrices Q  and R  are the parameters of the 

algorithm. They characterize the transient processes. 

The problem is to choose such matrices Q  and R  that 
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they would ensure the required performance of the 

algorithm under the given control constraints. 

 

4.2 Average deviation from the desired trajectories 

The main problem of the LQR application to the 

multi-satellite formation is that for each of the N 

satellites there are N-1 desired trajectories relative to 

each of the rest of the satellites. The desired relative 

trajectories are chosen in the way that all the satellites 

are located in the spots corresponding to the respective 

pixels of the letters-to-be-displayed during the motion. 

So, each satellite needs to apply the control (9) for each 

trajectory deviation. But the deviations ije  could lead to 

the completely different control vectors iju . That is why 

a strategy has to be defined for the constructing of the 

required formation. 

We propose the following scheme to solve this 

problem. For each satellite one can calculate the mean 

vector of the deviations 
ie  as follows: 

1

1

/ ( 1)
N

i ij

j

N




 e e , 

Then, using (9), the control vector is calculated: 
1 T

i iR B P u e . (11) 

Thus, the relative trajectory of the i-th satellite will 

converge to some average desired relative trajectory, but 

in the end all of the relative deviations will decrease and 

the required image configuration will be obtained.  

 

4.3 Decentralized control approach constraints 

The centralized control implies the presence of a 

head satellite in the formation, its motion is monitored 

by the remaining satellites, which are controlled to 

achieve the required relative trajectory, or the head 

satellite sends the control commands to the other 

satellites. On the contrary, the decentralized control 

approach means that each satellite is controlled 

individually and independently based on the relative 

motion. It is assumed that the calculated control applied 

to the other satellites could be unknown.  

Since in the decentralized scheme each satellite is 

controlled independently then the i-th satellite can only 

partially implement the calculated value. According to 

the aerodynamic force model max[0; ]x x

iu u  , where 

max 0iu   is the absolute maximum value of x x x

ij j iu u u   

the acceleration.  

Thus, it is assumed that in the case of the control 

saturation it is necessary to implement maximum 

possible component along the Ox axes, but according to 

the force model in this case the other components are 

zero: max max 0 0
x x

u   u . In the case the calculated 

control 
iu  is in the acceptable control region, then it 

could be implemented. But in the case if the calculated 

average deviation control 
x

iu  is of negative value, then 

its vector 
iu  cannot be implemented and set to zero. In 

the case when the max0 x x

iu u   in the acceptable 

control region, but the sum of the other two components 

is saturated, i.e.    
2 2

max

y z yz

i iu u u  , then it is 

reasonable to implement its maximum value 
max

yzu . 

However in that case according to the Fig.4 the angle  

52   deg and the Ox component
x

iu  at this angle is 

/ 0.8x

iu k  . So, the control vector to be applied in that 

case is max max max/ /
yz x y yz z yz

i i iu u u u u   u , i.e. the 

calculated values for the Oy and Oz values are 

normalized to the maximum possible value max

yzu . 

Thus, summarily, for the 
iu  one can propose the 

following decentralized control law: 

   

max max

max max

2 2

max

max

, if ,

, if  0 ,

and ,

, if  0 ,

0, if  0.

x x x

i

yz x x

i

y z yz

i i i

x x

i i

x

i

u u

u u

u u u

u u

u

 

  


  

  




u

u

u

u

 (12) 

The proposed decentralized control strategy is 

derived empirically based in the practical logics, its 

values are just partly based on the LQR because it is 

takes into account the aerodynamic force value 

constrains. So, the algorithm performance is needed to 

be demonstrated. Due to actual aerodynamic force 

restrictions the convergence of the relative deviations of 

the trajectories cannot be proved analytically. That is 

why only numerical simulations is used for the 

controlled motion study. 

 

4.4 Construction of reference trajectories 

To calculate the relative deviations ije  all the 

reference trajectories between all the satellites should be 

defined. First, the required flat image has to be 

discretised to be represented in pixels. Next, the 

distance between the pixels should be set to be 

recognizable by human eye observing the formation in 

LEO. Then, such an initial velocity is defined that 

according to HCW free-motion equations (1) the image 

would rotate along closed relative orbits. To maintain 

the relative distances between the pixels for the observer 

the relative orbits are chosen as projected circular orbit. 

The phase of the reference orbit is calculated to provide 

the appropriate orientation of the image for the observer 

which is located in a given geographical point. 

 

5. Numerical study 
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Consider the application of the proposed control rule 

for the problem of forming the formation after the 

launch. The cluster launch scheme is considered. It is 

assumed that the satellites separate from the launcher in 

the Ox  axis direction one after another with the time 

interval t  between the launches. The velocity of the 

ejection 
eV  is assumed to be the same for all the 

CubeSats, however due to launch system inaccuracy the 

ejection velocity 
eV  is subjected to errors. So, the initial 

velocity vector 
0V  in orbital reference frame is 

modelled as follows: 

0 ,

eV V

V

V







 
 


 
  

V  (13) 

where V  is ejection error considered as a normally 

distributed random value with zero mean and 
2

V  

covariance. 

After separation the implementation of control 

which is aimed at achieving the required formation 

begins. In this example, a textbox showing “IAC” is to 

be constructed. The reference orbits for the “IAC” 

construction is presented in Fig. 8. To form this image, 

53 satellites are required. One can see from Fig.8 that 

for each satellite the reference orbit is circular. 

 
Fig.8. Reference relative orbits of the satellites 

 

All the parameters used in the simulation of the 

controlled motion of the CubeSat formation are 

presented in Table 1. The value of the density is 

according to atmosphere density along the orbit with a 

350 km altitude according to the Russian GOST model 

of upper atmosphere [21].  

 

Table 1. Parameters of simulation 

Main parameters of the formation 

Number of satellites in the formation, N  

Distance between two the satellites in 

image 

53 

 

700 m 

Launch parameters 

Time interval between the launches, 

t  

10 s 

Ejection velocity, 
eV  0.5 m/s 

Ejection error deviation, 
V  0.05 m/s 

CubeSats parameters 

Mass of satellite, m  18 kg 

Size of sunlight reflectors, S  4x4 m2 

Aerodynamic drag coefficient, 
aC  2 

LQR parameters 

Matrix Q   
6x6E   

Matrix R diag ([1e-13; 

1e-14; 1e-14]) 

Aerodynamic drag force parameters 

Constant atmosphere density,   1110
kg/m3 

Orbit altitude, h  350 km 

Airflow velocity, / ( )EV R h   7.69 km/s 

Parameters    and    0.1 

Modelling parameters 

Time of simulation, T  24 hours 

Atmosphere density model GOST model 

 

Fig. 10 demonstrates the relative motion trajectories 

under the proposed decentralized control (12) relative to 

the last launched satellite. It can be seen that the relative 

trajectories converge to the desired trajectory described 

by free relative motion equations. 

 
Fig. 10. Relative trajectories under the proposed control 

 

Fig 11 shows the desired and real position of all of 

the satellites in the orbital reference frame after 40 

hours of control. One can see that they are close to each 

other. Fig.11 demonstrates the deviations vector of the 

second-launched satellite relative to the last launched 

satellite. One can see that all the deviations after 

approximately 20 hours tend to zero. The slowest 

convergence is shown in the Oy component of the 
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deviation vectors due to the relatively small lift 

component of the aerodynamic force. 

 
Fig. 11. Desired and real position of all of the satellite in 

the orbital reference frame after of 40 hours of control 

 

 
Fig. 12. Satellite position vector deviation relative to the 

last-launched satellite 

 

The calculated control according to (11) for the 

average relative vector of deviations for the first satellite 

is presented in Fig. 13 as an example. The 

corresponding implemented value according to (12) is 

shown in Fig. 14. It can be seen that in the beginning the 

calculated value for the Ox component is positive. It 

cannot be realized by the aerodynamic force, so its 

value is set to zero. After approximately 3 hours the 

deviation along the Ox axis decreases considerably, but 

all the positive calculated values are still not 

implemented. After the 3 hours the deviation along Oy 

axis still was large enough that lead to the saturation for 

the corresponding control vector component. During 

this case that lasted about next 20 hours the second 

control situation from (12) was implemented. It caused 

a temporary increased deviation along the Ox axis. But 

after 15 hours the deviations along Oy axis decreased 

and all of the components of the calculated control came 

to the acceptable control region. The plots for the other 

satellites are similar and therefore are not presented in 

the paper. 

 
Fig. 13. Calculated control vector according to the (11) 

control algorithm 

 

 
Fig. 14. The implemented control according to the (12) 

decentralized strategy 

 

For the higher orbit altitude, the proposed control 

scheme requires more time for constructing a flat image. 

The slowest is y-component error vector because it is 

controlled by the lift force which is about 10 times 

smaller than the aerodynamic drag. The convergence 

time for the out-of-plane relative component can take 

several days, which is unacceptable. So, for the orbits 

with altitude of 400km and more thruster actuation 

should be considered to obtain faster image construction 

in out-of-plane direction. 

 

6. Conclusions  

The decentralized control scheme is proposed for 

constructing a formation showing a flat image using the 

aerodynamic force with the lift component. Its 

application is demonstrated using 53 satellites with 

sunlight reflectors. The preliminary study shows that for 

such satellites under appropriate illumination conditions 

it is possible to observe the satellites as a defined image 
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from the ground. Considering acceptable time for image 

construction of about several hours it is shown that fully 

aerodynamic control can be applied only for the orbits 

with altitudes of 400 km and lower. 
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