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Algorithms based on Kalman filter 
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The measurement model
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The problem of EKF adjustment 
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 The real dynamic and measurement 

models differ from the ones used in EKF. 

 Then the dynamical model error matrix Q 

and measurement model error matrix R 

become the adjustment parameters. 

 The problem is to choose Q and R to 

increase the EKF estimation accuracy. 
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Investigation technique Shortcomings 

Monte-Karlo simulations 

(Mortari D., Markley L.S., Steyn W.H., 

Matthews O., Maybeck P.) 

Time-consumable 

Genetic algorithms 

(Bar-Itzhack, Oshman Y., Clements R.) 

Time-consumable, obtain local 

minimum only  

Adaptive Filtering 

(Bekir E., Ng A., Kumar K.) 

Require more computational 

power 

Covariance matrix computation for 

stationary system 

(Parusnikov N., Golovan A.,  

Balacrishnan A.) 

Applicable only for stationary 

system 

    We propose the advanced analytical adjustment technique 

for Kalman Filter performance investigation 

Kalman Filter Adjustment Techniques 
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Accuracy investigation for quasi stationary motion 
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For stationary system:

the asymptotic error matrix  after convergence is existing 

and can be obtained from equation
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Investigation of Influence of Unaccounted in EKF 

Perturbations  

   Kalman filter equations "Truth model" equations 

Dynamical model 
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EKF Adjustment Technique 
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 

,

, ,

,

.

, arg min( ).

 If the motion is close to quasi stationary then one can calculate 

the asymptotical value of error matrix  

 Filter adjustment problem
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an be solved by gradient descent method 

calculating the accuracy in certain parameters area with defined step
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• Form is hexagonal prism (1 Unit) 

• 1U module weight is about 10 kg 

• Modular principle of microsatellite 

building 

• The microsatellite consists of unified 

elements 

• Plug-n-Play Architecture, describing 

mechanical, electrical and data 

interfaces 

• Depending on the mission requirements 

a specific set of ADCS actuators and 

sensors are installed on board 

TabletSat.  

 

 

TabletSat microsatellite series 

9 DyCoSS-2014, Italy, Roma 



•Micro-satellite technology demonstrator  

•Planning launch is in the summer of 2014 

•Mass is about 25kg. 

•Three-axis ADCS:  

Flywheels 

Gimbals 

Star sensor 

Sun sensors 

Magnetometer 

Gyro 

 

. 

 

TabletSat-Aurora microsatellite 
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Parameter Magnetometer Sun 

sensor 

Gyro Star 

sensor 

Instrument 

range 

± 200 000 nT ± 60 

deg 

± 250 

deg/s 

– 

Standard 

error 

250 nT 0.1 deg 0.005 

deg/s 

0.001 

deg 



Attitude determination sensors parameters 
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An Example: Kalman Filter Based on 

Magnetometer and Sun Sensor Measurements 

11 

 

 

3 3

1 1

3 3

State vector:                       

Attitude motion equ

( )

ations:

Linearized  

motion equations:

[ ( ) ( ) ]

1
,

2

1

2, ( )

rel

T

si ctrl gg dist si si

so so so

g

t t t

W
t

k K



 

 


 






    






 

 

x q ω

Jω N N N ω Jω

q q ω

E
x F x F

J F K W J

+ h

6 6

1 2 3 3 3

1 2 3 3 3 ,6 6

Measurement model:

Linearized mea

( )

( )

0surement
 

model:

( )
, ,

0

meas so o

meas so o

o o o k
i

o o o k i

A

A

h h h A q
h

h h h q
 





 


 
 
  

   
     
   

   
     

   

b q b
z v

s q s

b b b
z H x H

s s s

DyCoSS-2014, Italy, Roma 



Attitude (left) and angular velocity (right) determination accuracy dependence 

on parameters. Contours correspond to Euler angles accuracy levels in degree 

(left) and to angular velocity accuracy in degree per second (right). 

Accuracy investigation  

for quasi stationary motion  
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Attitude (left) and angular velocity (right) determination accuracy dependence on 

parameters under and constant perturbation torque . Contours correspond to Euler 

angles accuracy levels in degree (left) and to angular velocity accuracy in degree per 

second (right). 

Accuracy dependence on perturbation 

unaccounted in motion equation 
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 Assume the real equation of motion 
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Consider the perturbation vector to be
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Attitude (a) and angular velocity (b) errors during Kalman filter work simulation with 

parameters                                            , and constant perturbation torque 

Comparison with EKF simulation results 

 
4 1 3 2 The maximum of accuracy achieves at 8 10 c and 2 10 c .

 The maximum of accuracy 0.12 deg and 0.009 deg/

 These values are in a good correspondence with EKF simulation data.
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The best attitude (left) and angular velocity (right) determination accuracy dependence 

on angle between magnetic field direction and sun direction 

 under constant perturbation torque 

Comparison with EKF simulation results 

 0

0

0 0

 The accuracy decreases when angle between magnetic field vector  

and sun direction vector  differs from 90 degrees.

 If during the satellite exploitation the angle between  and is less than 1





b

s

b s 0 degree 

or more then 170 degree the accuracy of Euler anglesestimation is unsatisfactory.
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Conclusions 
 The proposed method of Kalman filter performance 

study is an effective instrument for accuracy analysis 

and filter tuning in quasi-stationary satellite motion 

case. 

  The approach allows to estimate the influence of 

unaccounted perturbation on a motion determination 

accuracy.  

 The proposed advanced method for Kalman filter 

performance adjustment and study is applied for a 

set of the algorithms of "TabletSat" microsatellites 

series. 
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