- 4. Chartrand G., Harary F. Graphs with prescribed connectivities // Theory of Graphs. NY: Academic Press, 1968. P. 61–63.
- 5. Теребин Б. А., Абросимов М. Б. Об оптимальности реализации графов с заданными мерами связности // Прикладная дискретная математика. Приложение. Томск: Издательский дом ТГУ, 2020. С. 103–105.
- 6. Теребин Б. А., Абросимов М. Б. О минимальном числе рёбер в реализациях графов с заданными мерами связности // Компьютерные науки и информационные технологии : Материалы Междунар. науч. конф. Саратов: Издат. центр «Наука», 2021. С. 159–161.

DOI: 10.20948/dms-2022-62

СТРОЕНИЕ ИЗОМОРФИЗМОВ И ГРУПП АВТОМОРФИЗМОВ УНИВЕРСАЛЬНЫХ ГРАФОВЫХ АВТОМАТОВ

В. А. Молчанов, Р. А. Фарахутдинов (Саратов)

Далее всюду под графом будем понимать ориентированный граф [1]. Для графа $G=(X,\rho)$ дугу $(x,y)\in \rho$ будем называть собственной, если $(y,x)\notin \rho$. Граф называется квазибесконтурным, если каждая его собственная дуга не содержится ни в каком контуре. Квазибесконтурный граф будем называть тривиальным, если у него нет собственных дуг, и нетривиальным, в противном случае. Граф $G=(X,\rho^{-1})$ называется двойственным для графа $G=(X,\rho)$. Антиизоморфизмом графа $G_1=(X_1,\rho_1)$ на граф $G_2=(X_2,\rho_2)$ называется изоморфизм графа G_1 на двойственный к G_2 граф $G=(X_1,\rho_2)$ натиавтоморфизмом графа $G=(X_1,\rho_2)$ называется изоморфизм графа $G=(X_1,\rho_2)$ на двойственный к себе граф $G=(X_1,\rho_2)$

Автомат $A=(X_1,S,X_2,\star,\diamond)$ называется графовым, если множество состояний X_1 и множество выходных сигналов X_2 наделены структурами графов $G_1=(X_1,\rho_1)$ и $G_2=(X_2,\rho_2)$, что для любого входного сигнала $s\in S$ функция переходов $\delta_s(x)=x\star s$ $(x\in X_1)$ является эндоморфизмом графа G_1 и функция выходов $\lambda_s(x)=x\diamond s$ $(x\in X_1)$ является гомоморфизмом графа G_1 в граф G_2 . Символически такие автоматы обозначаются $A=(G_1,S,G_2,\star,\diamond)$. Графовый

автомат $Atm(G_1, G_2) = (G_1, End \ G_1 \times Hom(G_1, G_2), G_2, \star, \diamond)$ является универсально притягивающим объектом в категории [2] графовых автоматов, поэтому его называют универсальным графовым автоматом.

Для отображений $f:X\to Y,\,g:X\to Y$ декартово произведение $f\times g:X\times X\to Y\times Y$ определяется по формуле $(f\times g)(u,v)=(f(u),g(v)).$ Для любого преобразования φ множества X верно, что $(f\times g)(\varphi)=f^{-1}\varphi g.$ Обозначим $f\times f=f^2.$

Изоморфизмом графового автомата $A_1=(G_1,S_1,G_1',\star_1,\star_1),$ где $G_1=(X_1,\rho_1),\ G_1'=(X_1',\rho_1'),$ на графовый автомат $A_2=(G_2,S_2,G_2',\star_2,\diamond_2),$ где $G_2=(X_2,\rho_2),\ G_2'=(X_2',\rho_2'),$ называется упорядоченная тройка $\gamma=(f,h,g),$ состоящая из изоморфизмов $f:G_1\to G_2,\ h:S_1\to S_2,\ g:G_1'\to G_2',$ таких, что для любых $x\in X_1,\ s,t\in S_1$ выполняются условия: $h(s\cdot t)=h(s)\cdot h(t),$ $f(x\star_1 s)=f(x)\star_2 h(s),\ g(x\diamond_1 s)=f(x)\diamond_2 h(s).$ Множество всех изоморфизмов автомата A_1 на автомат A_2 обозначается Ізо $(A_1,A_2).$ Изоморфизм автомата A_1 на себя называется автоморфизмом автомата A_1 . Множество всех автоморфизмов автомата A_1 с бинарной операцией композиции образуют группу Aut A_1 .

Следующий результат описывает взаимосвязь изоморфизма полугрупп входных сигналов автомата с изоморфизмами его графов состояний и выходных сигналов.

Теорема 1. Положим i=1,2. Пусть $G_i=(X_i,\rho_i),\ G_i'=(X_i',\rho_i')$ — рефлексивные графы, граф G_1 имеет дугу, не входящую ни в один орцикл [3], $\operatorname{Atm}(G_i,G_i')$ — универсальные графовые автоматы с полугруппами входных сигналов $S_i=\operatorname{End} G_i \times \operatorname{Hom}(G_i,G_i'),$ $h:S_1\to S_2$ — изоморфизм полугруппы S_1 на полугруппу S_2 . Тогда существуют изоморфизмы (или антиизоморфизмы) $f,g_a\ (a\in X_1)$ графов G_1,G_1' соответственно на графы G_2,G_2' , что для любой пары $(\varphi,\psi)\in S_1$ имеет место равенство

$$h(\varphi, \psi) = (f^2(\varphi), \psi^{\varphi}), \tag{1}$$

где $\psi^{\varphi}(f(a)) = g_{\varphi(a)}(\psi(a))$ для всех $a \in X_1$.

В следующей теореме показана связь между изоморфизмами универсальных графовых автоматов и их компонент.

Теорема 2. Положим i=1,2. Пусть $G_i=(X_i,\rho_i),\ G_i'=(X_i',\rho_i')$ — графы u f— изоморфизм G_1 на G_2, g — изоморфизм G_1' на G_2' . Упорядоченная тройка отображений $\gamma=(f,h,g)$ тогда u только тогда является изоморфизмом универсального графового автомата $\operatorname{Atm}(G_1,G_1')$ c полугруппой входных сигналов $S_1=\operatorname{End}\ G_1\times$

 $\operatorname{Hom}(G_1,G_1')$ на универсальный графовый автомат $\operatorname{Atm}(G_2,G_2')$ с полугруппой входных сигналов $S_2=\operatorname{End}\ G_2 \times \operatorname{Hom}(G_2,G_2')$, когда отображение $h:S_1 \to S_2$ определяется для всех $(\varphi,\psi) \in S_1$ по формуле $h(\varphi,\psi)=(f^2(\varphi),(f\times g)(\psi))$.

Следующая теорема описывает строение изоморфизмов полугрупп входных сигналов универсальных графовых автоматов.

Теорема 3. Положим j=1,2. Пусть $G_j=(X_j,\rho_j),G_j'=(X_j',\rho_j')$ — рефлексивные графы, причем G_1' — антисимметричный, G_1 — нетривиальный квазибесконтурный и имеет компоненты связности $\{X_{1_i}\},\ i\in I,\ u$ пусть $\mathrm{Atm}(G_j,G_j')$ — универсальные графовые автоматы с полугруппами входных сигналов $S_j=\mathrm{End}\ G_j\times\mathrm{Hom}(G_j,G_j')$. Тогда отображение $h:S_1\to S_2$ тогда и только тогда является изоморфизмом полугруппы S_1 на полугруппу S_2 , когда для некоторого изоморфизма (антиизоморфизма) $f:G_1\to G_2$ и некоторого семейства изоморфизмов (антиизоморфизмов) $g_i:G_1'\to G_2',\ i\in I$, отображение h для всех $(\varphi,\psi)\in S_1$ определяется по формуле

$$h(\varphi, \psi) = (f^2(\varphi), \psi^{\varphi}), \tag{2}$$

еде $\psi^{\varphi}(f(a)) = g_i(\psi(a))$ для любого $a \in X_1$, такого, что при некотором $i \in I$ выполняется $\varphi(a) \in X_{1_i}$.

Пусть G, G' — графы и $\operatorname{Atm}(G,G')$ — универсальный графовый автомат над графами G, G'. Полученные результаты о строении изоморфизмов универсальных графовых автоматов позволяют исследовать взаимосвязь между группами автоморфизмов автомата $\operatorname{Atm}(G,G')$ и группами автоморфизмов его компонент. Обозначим через $\operatorname{Ant} G$ множество всех антиавтоморфизмов графа G, через $(\operatorname{Aut} G)^I$ — множество семейств автоморфизмов $g_i \ (i \in I)$ графа G.

Теорема 4. Пусть $G=(X,\rho)$ — нетривиальный квазибесконтурный рефлексивный граф с компонентами связности $\{X_{1_i}\}, i \in I$, $G'=(X',\rho')$ — антисимметричный рефлексивный граф, и пусть $A=\mathrm{Atm}(G,G')$ — универсальный графовый автомат с полугруппой входных сигналов $S=\mathrm{End}\ G imes \mathrm{Hom}(G,G')$. Тогда для группы автоморфизмов Aut A автомата A, групп автоморфизмов Aut G' графов G, G', группы автоморфизмов Aut S полугруппы входных сигналов S выполняются следующие условия:

- 1) Aut $A \cong \text{Aut } G \times \text{Aut } G'$;
- 2) группа автоморфизмов Aut S изоморфна алгебре c носителем (Aut $G \times (\text{Aut } G')^I) \cup (\text{Ant } G \times (\text{Ant } G')^I)$ и бинарной операци-

ей ·, которая определяется по формуле

$$(f_1, g_1^i) \cdot (f_2, g_2^i) = \left(f_1 \cdot f_2, g_1^i \cdot g_2^{\tilde{f}_1(i)}\right),$$

где f_1, f_2 — автоморфизмы (антиавтоморфизмы) графа $G, g_1^i, g_2^i \ (i \in I)$ — семейства автоморфизмов (антиавтоморфизмов) графа G' и \tilde{f}_1 — перестановка множества индексов I, индучируемая автоморфизмом (антиавтоморфизмом) f_1 .

Список литературы

- 1. Харари Ф. Теория графов. M.: Мир, 1973.
- 2. Плоткин Б. И., Гринглаз Л. Я., Гварамия А. А. Элементы алгебраической теории автоматов. М.: Высш. шк., 1994.
- 3. Важенин Ю. М. Об элементарной определяемости и элементарной характеризуемости классов рефлексивных графов // Изв. вузов. Матем. 1972. Вып. 7. С. 3–11.

DOI: 10.20948/dms-2022-63