На правах рукописи

Иоаннисиан Михаил Викторович

Решение уравнения переноса нейтронов на основе модели трехмерной многозонной кинетики с применением метода Монте-Карло

Специальность: 05.13.18 «Математическое моделирование, численные методы и комплексы программ»

> Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

> > Москва – 2019

Работа выполнена в Федеральном государственном бюджетном учреждении «Национальном исследовательском центре «Курчатовский институт» (НИЦ «Курчатовский институт»).

Научный руководитель:	Быков Вячеслав Парфеньевич, кандидат физико-математических наук, старший научный сотрудник, начальник лаборатории новых объектов НИЦ "Курчатовский институт"	
Официальные оппоненты:	Аристова Елена Николаевна, доктор физико-математических наук, старший научный сотрудник, главный научный сотрудник ИПМ им. М.В. Келдыша РАН	
	Селезнев Евгений Федорович, доктор технических наук, старший научный сотрудник, главный научный сотрудник лаборатории физики реактора ИБРАЭ РАН	
Ведущая организация:	Акционерное общество «Ордена Ленина Научно-исследовательский и конструкторский	

Научно-исследовательский и конструкторский институт энерготехники имени Н. А. Доллежаля» (АО «НИКИЭТ)

Защита диссертации состоится «___» _____ 2020 года в «__» час. «__» мин. на заседании диссертационного совета Д002.024.03, созданного на базе ИПМ им. М.В. Келдыша РАН, расположенного по адресу: 125047, г. Москва, Миусская пл., д. 4.

С диссертацией можно ознакомиться в библиотеке Института прикладной математики им. М.В. Келдыша РАН и на сайте *www.keldysh.ru/council/3/*.

Автореферат разослан «____» ____ 2019 года.

Ученый секретарь диссертационного совета Д002.024.03, кандидат физико-математических наук

lekop

Корнилина М.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Решение уравнения переноса с пространственно-временной зависимостью плотности потока нейтронов представляет сегодня одну из наиболее сложных задач реакторной физики. Развитие современной вычислительной техники и появление суперкомпьютеров открывают возможность использовать для этой цели математические модели, основанные на методе Монте-Карло без введения каких-либо существенных приближений. Применение этих моделей диктуется и повышением требований к безопасности реакторов и точности получаемых результатов.

Одной из таких моделей является развиваемая автором модель пространственной (трехмерной) кинетики, называемая здесь и далее методом многозонной кинетики. В методе расчетная область представляется в виде множества взаимосвязанных подобластей, а изменение их характеристик описывается системой дифференциальных уравнений, в которые входят интегральные коэффициенты, определяющиеся с использованием метода Монте-Карло.

Основные положения этого метода были впервые сформулированы с использованием феноменологического подхода Р. Эйвери в 1958 г. применительно к системе из двух взаимодействующих реакторов. На сегодняшний день метод имеет достаточную известность, был теоретически обоснован, но успешно применялся для расчета только ограниченного класса задач, в основном, для моделирования нестационарных процессов в слабосвязанных системах, таких как импульсные исследовательские реакторы и в задачах космического назначения.

Следует отметить, что этот метод обеспечивает хорошую точность, которая практически ограничена только подробностью разбиения рассматриваемой системы на подобласти и детализацией описания процесса переноса нейтрона от рождения до гибели в программах решения задачи методом Монте-Карло, где используется поточечное представление зависимости сечений от энергии, полученных из библиотеки оцененных ядерных данных. Таким образом, использование метода в обосновании безопасности как существующих, так и проектируемых реакторов, может существенно повысить их надежность и качество.

Несомненно, расчет переходных процессов в реакторах в значительной степени определяется влиянием обратных связей по теплофизическим свойствам материалов. Большинство вопросов, связанных с безопасностью ядерных реакторов, не обходится без совместного решения нейтронно-физической и теплогидравлической задач в рамках так называемого динамического комплекса.

Все это в достаточной мере обосновывает **актуальность** задачи разработки комплекса программ для моделирования нейтронной кинетики и динамических процессов в ядерном реакторе.

Цель диссертационной работы

Разработка вычислительных алгоритмов и комплексов программ для решения нестационарных задач реакторной физики на основе математической модели пространственной многозонной кинетики с возможностью вычисления распределения

групповой плотности потока нейтронов по выделенным областям и учета обратных связей по теплофизическим свойствам материалов.

Для достижения этой цели решены следующие задачи:

1. Выведены уравнения для вычисления распределения групповой плотности потока нейтронов, дополняющие математическую модель многозонной кинетики.

2. Построены вычислительные алгоритмы определения обменных коэффициентов, для мгновенных, запаздывающих нейтронов и нейтронов внешнего источника на основе метода Монте-Карло.

3. Проведена адаптация неявной численной схемы (3,2) метода для решения системы дифференциальных уравнений многозонной кинетики.

4. Алгоритмы и численная схема реализованы в виде комплекса программ для моделирования нестационарных нейтронно-физических процессов на основе двухэтапной методики.

5. Проведена верификация программного комплекса применительно к моделированию нейтронной кинетики активной зоны реактора водо-водяного типа на основе решения численных тестов и задач.

6. Разработана итерационная схема объединения нейтронно-физического программного комплекса с теплогидравлической программой КЕДР-Д, созданной в НИЦ «Курчатовский институт», и проведена ее реализация в виде комплекса программ расчета динамики с учетом обратных связей по теплофизическим свойствам материалов.

7. На основе комплекса проведено моделирование динамического процесса, предложенного в международном численном бенчмарке PWR MOX/UO2 core transient benchmark.

Методы решения поставленных задач

В процессе решения поставленных задач были использованы методы математического анализа, метод функции Грина, метод Монте-Карло для моделирования случайных процессов, численные методы решения обыкновенных дифференциальных уравнений, методы линейной алгебры, а также современные возможности программирования с использованием многопроцессорных вычислительных систем.

Научная новизна результатов работы

В диссертации предложены и обоснованы следующие научные результаты.

Впервые получены уравнения для вычисления групповой плотности потока нейтронов, обеспечивающие в математической модели многозонной кинетики возможность моделирования распределения групповой плотности потока по выделенным областям.

Впервые разработаны и реализованы обобщенные алгоритмы вычисления обменных коэффициентов для запаздывающих нейтронов на основе метода Монте-Карло. Использование в модели этих коэффициентов уточняет результаты моделирования нестационарных процессов. Проведена адаптация неявной численной схемы (3,2) метода для решения системы дифференциальных уравнений многозонной кинетики. Новая адаптированная схема позволяет эффективно решать задачи с высокой детализацией разбиения системы на подобласти.

Достоверность результатов

Достоверность научных положений и практических результатов, полученных в диссертационной работе, подтверждена используемой строгой математической моделью, проверкой корректности созданных алгоритмов, численных схем на основе опубликованных экспериментальных и расчетных данных, а также сравнением результатов расчета тестовых и модельных задач по разработанным комплексам программ с результатами программ, использующих другие математические модели.

Практическая значимость

Разработаны комплексы программ для моделирования нейтронной кинетики и динамических процессов. На их основе можно определять пространственновременное изменение нейтронно-физических и теплогидравлических характеристик активных зон реакторов водо-водяного типа. Комплексы открывают возможность решать задачи, связанные с исследованием запуска реакторов, обоснованием их безопасности, расчетом аварийных режимов и переходных процессов. Результаты, полученные на основе комплексов, могут быть использованы в качестве реперных для верификации программ с произвольными методами решения уравнения переноса нейтронов, в том числе и для отладки программ инженерного класса.

Основные положения, выносимые на защиту

Основные положения диссертации, выносимые на защиту, приведены в разделе "Основные результаты работы" в конце настоящего автореферата.

Личный вклад автора

Все результаты диссертации, выносимые на защиту, получены соискателем лично. В том числе соискатель самостоятельно провел вывод уравнений для групповой плотности потока нейтронов, реализовал вычислительные алгоритмы определения обменных коэффициентов, провел адаптацию численной схемы (3,2) метода, создал комплексы программ расчета нейтронно-физических и теплогидравлических процессов, разработал все компьютерные модели и провел все расчеты. Научный руководитель В.П. Быков определил первоначальную постановку задачи, предложил экспериментальные данные для отработки алгоритмов расчета обменных коэффициентов и участвовал в обсуждении результатов.

Апробация работы

Основные положения диссертации доложены на следующих российских и международных конференциях и семинарах:

• межведомственный XXIII семинар "Нейтронно-физические проблемы атомной энергетики с замкнутым топливным циклом (Нейтроника-2012)". 30 октябрь – 2 ноябрь 2012 г, г. Обнинск, ФГУП ГНЦ РФ – ФЭИ (1 доклад);

• международная научно-техническая конференция "Инновационные проекты и технологии ядерной энергетики", НИКИЭТ-2012, 27-29 ноябрь 2012 г. (1 доклад);

• конференция молодых специалистов "ИННОВАЦИИ В АТОМНОЙ ЭНЕРГЕТИКЕ", НИКИЭТ, г Москва, 23-24 мая 2017 г. (1 доклад);

• научно-техническая конференция «Нейтронно-физические проблемы атомной энергетики» «НЕЙТРОНИКА-2017», АО ГНЦ РФ – ФЭИ, с 29 ноября по 1 декабря 2017 года (2 доклада).

• семинар «Моделирование динамики ЯЭУ (разработка программных средств, верификация, оценка точности расчета)», ФГУП «НИТИ им А.П. Александрова, г. Сосновый бор, Россия, 5-7 июня 2018 г. (1 доклад)

Публикации

По результатам диссертации опубликовано 7 работ в научных журналах, входящих в Перечень рецензируемых научных изданий, рекомендованных Высшей аттестационной комиссией для опубликования основных научных результатов диссертаций, или входящих в одну из международных баз данных и систем цитирования Scopus, Web of Science.

Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, четырех глав, заключения, списка литературы и двух приложений. Работа содержит 125 страницы печатного текста, 48 рисунков, 23 таблицы и 1 приложение. Список литературы включает 74 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Введение. Во введении описаны предпосылки к разработке программного обеспечения для моделирования нестационарных процессов в ядерных реакторах с использованием метода многозонной кинетики. Отмечается рост интереса в мире к моделированию нестационарных процессов на основе метода Монте-Карло. В основном, это связано с развитием возможностей вычислительной техники и ужесточением требований к точности результатов для повышения надежности и качества современных ЯЭУ. Кроме этого, программы, использующие метод Монте-Карло, как правило, обладают развитыми средствами для моделирования геометрии и свойств систем любой сложности. Поэтому применение данного метода позволяет расширить круг задач, актуальных на сегодняшний день. Сюда входят задачи обоснования безопасности реакторов, их пуска, расчет аварийных режимов, а также

моделирования нестационарных процессов в реакторах, имеющих нестандартное строение.

Так как используемые в многозонной кинетике нейтронно-физические характеристики могут быть определены на основе метода Монте-Карло, для вычисления этих характеристик предполагается использование возможностей программы MCU-TR.

Отмечается, что точность результатов расчета в методе регулируется подробностью сетки разбиения рассматриваемой системы на подобласти и ограничена только детализацией описываемых процессов переноса нейтронов методом Монте-Карло.

Кроме этого, отмечается важность учета обратных связей по теплофизическим свойствам материалов для задач безопасности и создания комплекса программ для расчета динамики.

Первая глава посвящена анализу опубликованной научно-технической литературы, относящейся к методу многозонной кинетики, и обзору современного программного обеспечения, применяющегося для решения нестационарного уравнения переноса нейтронов.

В основу метода многозонной кинетики положены идеи теории связанных реакторов, впервые сформулированной Р. Эйвери в 1959 г. для системы из взаимодействующих реакторов. Термин "связанные реакторы", означает, что в каждом реакторе часть нейтронов испускается в результате актов деления, вызванных нейтронами, порожденными в других реакторах. Изменение мощности каждого из реакторов описывается на основе дифференциальных уравнений с использованием интегральных коэффициентов, которые характеризуют эти реакторы и связи между ними. Формально эти уравнения могут быть использованы для моделирования кинетики, как в связках реакторов, так и в пространственных подобластях реактора. Эйвери Следует отметить, что уравнения были получены на основе феноменологического подхода. Основная работа по теоретическому обоснованию метода была проделана коллективом из Физико-Энергетического Института (ФЭИ).

В настоящее время этот метод применяются для моделирования импульсных взаимодействующих реакторов. Разработан комплекс специализированных программ для ЭВМ. Область его применения - исследование концепций импульсных реакторных систем, реакторно-лазерных установок и термоядерных реакторов с лазерным инициированием.

Из обзора литературы следует, что метод не применялся в расчетах аварийных ситуаций или других задач безопасности для ядерных реакторов. В этих задачах существенную сложность их решению вносят изменяющиеся физические свойства активных зон. В таком случае требуется применение программ, определяющих теплогидравлические характеристики.

Приведена формулировка задачи и уравнения многозонной кинетики в интегральной форме. В общей постановке задачи рассматривается расчетная область (рисунок 1), включающая активную зону, ее окружающее пространство, внешние источники и т.д.

В рамках многозонной кинетики вводится разбиение областей, содержащих делящиеся нуклиды (например, топливные N^{обл} твэлов), на подобластей: зоны При используется $F_1, F_2, ... F_{N^{ODT}}$. этом приближение, что В течение рассматриваемого динамического процесса в пределах каждой такой подобласти для скоростей генерации нейтронов допустимо разделение пространственной и временной зависимостей. Также система может N^{ucm} содержать внешних источников: $Q_1, Q_2, ..., Q_{N^{ucm}}$.

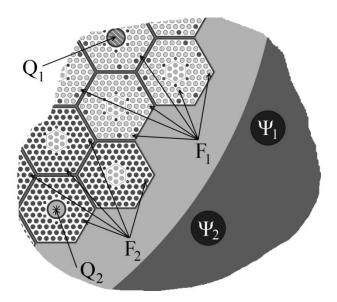


Рисунок 1 – Схема выделения С учетом введенных обозначений система уравнений многозонной кинетики и интегральной форме представляется в виде:

$$W_{i}(t) = \sum_{j=1}^{N^{obn}} \int_{0}^{t} dt \cdot \frac{v_{j}}{v_{i}} \cdot \left[\begin{pmatrix} (1-\beta_{j}) \cdot \alpha_{ij}(t' \rightarrow t) \cdot W_{j}(t') + \\ + \sum_{d=1}^{N^{3an}} \beta_{jd} \cdot \gamma_{ijd}(t' \rightarrow t) \cdot \int_{0}^{t'} d\tau \cdot \lambda_{jd} \cdot W_{j}(\tau) \cdot e^{-\lambda_{jd}(t'-\tau)} \right] + \\ + \sum_{k_{q}=1}^{N^{ucm}} \int_{0}^{t} dt \cdot \frac{1}{v_{i}} \cdot Q_{k_{q}}(t') \cdot q_{ik_{q}}(t' \rightarrow t)$$

где V_i - среднее число нейтронов на акт деления в области i; $W_i(t)$ - скорость реакции деления в области *i*; β_{id} – доля запаздывающих нейтронов *d*-го излучателя рождающихся в *j*-й подобласти, β_i – суммарная доля запаздывающих нейтронов рождающихся в j-й подобласти; λ_{id} - время распада группы излучателей d в области $\mathbf{F}_{j};\ N_{j}^{\mathit{san}}$ – общее число излучателей в j-й подобласти; $\mathcal{Q}_{k_{q}}\left(t
ight)$ - интенсивность испускания нейтронов внешним источником Q_{k_a} ; $\alpha_{ij}(t' \rightarrow t)$ – ядро перехода, представляющее собой число мгновенных нейтронов от деления в области і в момент времени t при условии, что мгновенный нейтрон, вызвавший деление, родился в области j в момент времени $t'; \gamma_{ijd}(t' \rightarrow t)$ и $q_{ik_a}(t' \rightarrow t)$ – аналогичные по смыслу функции для запаздывающих нейтронов излучателя группы d и для внешнего источника.

системы интегральных уравнений используется Для решения метод приведения к дифференциальной форме на основе представления ядер перехода в виде одной или нескольких экспонент.

обзор Кроме этого В главе представлен современных программ, использующихся для расчета кинетики. В настоящее время, для расчета реакторов, в основном применяются программы, использующие диффузионные методы. К этому

классу относятся программы PARCS (США), JAR-IQS (Россия), ГЕФЕСТ (Россия), БИПР-8КН (Россия), СТАРТ-UNK (Россия). Также следует отметить программу BARS (Россия), созданную на базе теории Галанина-Фейнберга. Кроме этого в расчетах кинетики используются детерминистские методы, которые обладают высокой точностью, но требуют для работы значительные вычислительные ресурсы. Среди них известны LUCKY_TD (Россия, НИЦ КИ), DORT_TD (Германия) и Оригинальной разработкой является метод поверхностных гармоник реализованный в программе SUHAM-TD (Россия, НИЦ "Курчатовский институт).

Отмечается, что в последнее время возрос интерес к прямому моделированию кинетики нейтронов методом Монте-Карло. Как правило, эти программы являются развитием стационарных версий программ. Сюда входят программы Dynamic Tripoli (Нидерланды), TDMCC (Россия), КИР (Россия).

Во второй главе представлены уравнения многозонной кинетики в дифференциальной форме, вывод отдельных уравнений для групповой плотности потока нейтронов, и описание комплекса программ для решения уравнений.

Уравнения для плотности потока нейтронов выведены на основе подхода, схожего с выводом уравнений многозонной кинетики. Считается, что выделены отдельные подобласти (рисунок 1) $\Psi_1, \Psi_2, ..., \Psi_{N^{\Phi}}$. Групповой поток определяется на основе разбиения энергетической области E на $N^{\Gamma p}$ интервалов: $E \in [E_g, E_{g+1}), g = \overline{1, N^{\Gamma p}}, E_{N^{\Gamma p}+1} = \infty$.

Общий вид уравнений многозонной кинетики вместе с уравнениями для плотности потока нейтронов представлен в таблице 1.

В состав уравнений входят следующие обменные коэффициенты:

• $K_{ij}(t)$ - коэффициент связи, определяющий среднее число вторичных нейтронов деления в области F_i от первичного мгновенного нейтрона, который родился в области F_j ; $K_{ijd}(t)$ и $K_{ik_q}(t)$ - аналогичные коэффициенты для, соответственно, запаздывающего нейтрона, рожденного в области F_j от предшественника группы d, и нейтрона, рожденного внешним источником Q_{k_q} ;

 $K_{gk_{\Phi}j}(t)$ - коэффициент связи, определяющий средняя интегральная плотность потока нейтронов группы g в области $\Psi_{k_{\Phi}}$, создаваемый мгновенным нейтроном, родившимся в области F_j ; $K_{gk_{\Phi}jd}(t)$, $K_{gk_{\Phi}k_q}(t)$ - аналогичные коэффициенты для запаздывающего нейтрона предшественника группы d, родившегося в области F_j , и нейтрона от внешнего источника Q_{k_a} ;

 $L_{ij}(t), L_{ijd}(t), L_{ik_{q}}(t), L_{gk_{\Phi}j}(t), L_{gk_{\Phi}jd}(t)$ и $L_{gk_{\Phi}k_{q}}(t)$ - временные характеристики, определяющие средние времена соответствующих процессов.

Группы уравнений ^{*)}	Описание дифференцируемых		
$\frac{dW_{ij}(t)}{dt} = -\frac{W_{ij}(t)}{L_{ij}(t)} + \left(1 - \beta_j\right) \cdot \frac{v_j}{v_i} \cdot \frac{K_{ij}(t)}{L_{ij}(t)} \cdot W_j(t)$	переменных $W_{ij}(t)$ - доля мощности переносимая мгновенными нейтронами в область F_i , при условии, что они родились в области F_j ,.		
$\frac{dY_{ijd}\left(t\right)}{dt} = -\frac{Y_{ijd}\left(t\right)}{L_{ijd}\left(t\right)} + \frac{v_{j}}{v_{i}} \cdot \frac{K_{ijd}\left(t\right)}{L_{ijd}\left(t\right)} \cdot C_{jd}\left(t\right)$	$Y_{ijd}(t)$ - доля мощности, переносимая запаздывающими нейтронами в область F_i , при условии, что они родились в области F_j от предшественников группы d .		
$\frac{dC_{jd}(t)}{dt} = -\lambda_{jd} \cdot C_{jd}(t) + \beta_{jd} \cdot \lambda_{jd} \cdot W_{j}(t)$	$C_{jd}(t)$ - переменная-аналог концентрации предшественников запаздывающих нейтронов группы d в области F_{j} .		
$\frac{dQ_{ik_{q}}\left(t\right)}{dt} = -\frac{Q_{ik_{q}}\left(t\right)}{L_{ik_{q}}\left(t\right)} + \frac{1}{v_{i}} \cdot \frac{K_{ik_{q}}\left(t\right)}{L_{ik_{q}}\left(t\right)} \cdot Q_{k_{q}}\left(t\right)$	$Q_{ik_q}(t)$ - доля мощности, переносимая нейтронами от внешнего источника Q_{k_q} в область F_i .		
$\frac{d\Phi_{gk_{\Phi j}}(t)}{dt} = -\frac{\Phi_{gk_{\Phi j}}(t)}{L_{gk_{\Phi j}}(t)} + v_j \cdot (1 - \beta_j) \cdot \frac{K_{gk_{\Phi j}}(t)}{L_{gk_{\Phi j}}(t)} \cdot W_j(t)$	Гі. $ \Phi_{gk_{\Phi}j}(t) - доля плотности потоканейтронов группы g в области \Psi_{k_{\Phi}} ,которая формируется мгновенныминейтронами, родившимися в области F_{j.} $		
$\frac{d\Phi_{gk_{\Phi}jd}\left(t\right)}{dt} = -\frac{\Phi_{gk_{\Phi}jd}\left(t\right)}{L_{gk_{\Phi}jd}\left(t\right)} + v_{j} \cdot \frac{K_{gk_{\Phi}jd}\left(t\right)}{L_{gk_{\Phi}jd}\left(t\right)} \cdot A_{jd}\left(t\right)$	$\Phi_{gk_{\Phi},jd}(t)$ - доля плотности потока нейтронов группы g в области $\Psi_{k_{\Phi}}$, которая формируется запаздывающими нейтронами, родившимися в области F _j от предшественников группы d		
$\frac{d\Phi_{gk_{\Phi}k_{q}}\left(t\right)}{dt} = -\frac{\Phi_{gk_{\Phi}k_{q}}\left(t\right)}{L_{gk_{\Phi}k_{q}}\left(t\right)} + \frac{K_{gk_{\Phi}k_{q}}\left(t\right)}{L_{gk_{\Phi}k_{q}}\left(t\right)} \cdot Q_{k_{q}}\left(t\right)$	$\Phi_{gk_{\Phi}k_{q}}(t)$ - доля плотности потока нейтронов группы g в области $\Psi_{k_{\Phi}}$, которая формируется нейтронами, родившимися от внешнего источника $Q_{k_{q}}$		
*) индексы переменных и обменных коэффициентов, имеют следующие области значений: $i, j = \overline{1, N^{obn}}; d = \overline{1, N^{san}}; k_q = \overline{1, N^{ucm}}; k_{\Phi} = \overline{1, N^{\Phi}}; g = \overline{1, N^{\Gamma p}}.$			

Таблица 1 - Уравнения многозонной кинетики

Полная мощность $W_i(t)$ в области F_i и плотность потока нейтронов $\Phi_{gk_{\Phi}}(t)$ группы g в области $\Psi_{k_{\Phi}}$ определяются через суммирование переменных групп соответствующих уравнений:

$$W_{i}(t) = \sum_{j=1}^{N^{o \delta n}} \left[W_{ij}(t) + \sum_{d=1}^{N^{3an}} Y_{ijd}(t) \right] + \sum_{k_{q}=1}^{N^{ucm}} Q_{ik_{q}}(t),$$
$$\Phi_{gk_{\Phi}}(t) = \sum_{j=1}^{N^{o \delta n}} \left[\Phi_{gk_{\Phi}j}(t) + \sum_{d=1}^{N^{3an}} \Phi_{gk_{\Phi}jd}(t) \right] + \sum_{k_{q}=1}^{N^{ucm}} \Phi_{gk_{\Phi}k_{q}}(t).$$

Система уравнений дополняется следующими типами начальных условий: подкритическое состояние без внешних источников, подкритическое состояние с внешними источниками и критическое состояние.

Схема моделирования нейтронной кинетики. Рассматривается система, или расчетная область, содержащая активную зону, ее конструктивные элементы и т.д. Считается, что нестационарный процесс рассматривается на временном интервале регулирования. С учетом изменения свойств системы, общий интервал разбивается на n подинтервалов (0,t₁), (t₁,t₂) ... (t_{n-1},t_n).

Уравнения многозонной кинетики решаются на основе последовательного применения двух численных методов – метода Монте-Карло для определения обменных коэффициентов (модуль REC для программы MCU-TR) и численной схемы решения дифференциальных уравнений (комплекс программ MRNK).

Моделирование нейтронной кинетики проводится на основе двухэтапной методики, схема которой представлена на рисунке 2.

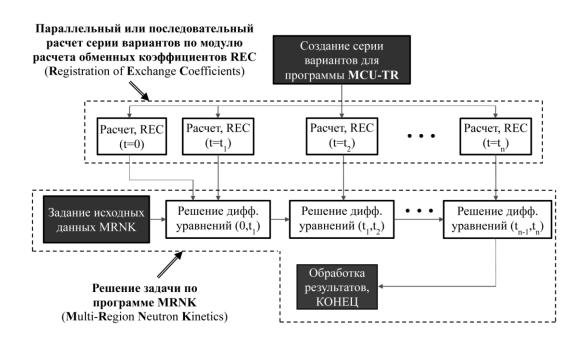


Рисунок 2 – Схема решения уравнений многозонной кинетики

В первую очередь создается расчетная модель рассматриваемой системы для программы MCU-TR. По аналогии с введенными обозначениями уравнений многозонной кинетики, считается, что модель размножающей системы, созданная на языке исходных данных MCU-TR, представляет собой пространственную область G (рисунок 1.1). Области с делящимися нуклидами F_j , и области для регистрации плотности потока $\Psi_{k_{\Phi}}$ выделяются на основе регистрационных объектов. Также указываются регистрационные объекты, в которых моделируются внешние источники Q_{k_a} .

На основе созданной модели подготавливается серия вариантов исходных данных, в которых заданы свойства материалов и изменение геометрии, соответствующие условиям нестационарного процесса на границах временных интервалов. Далее в параллельном или последовательном режиме по разработанному модулю REC для программы MCU-TR проводится расчет серии вариантов в стационарном режиме.

Полученные файлы с обменными коэффициентами передаются в программу, которая проводит решение дифференциальных уравнений.

Модуль REC. Алгоритмы расчета обменных коэффициентов уравнений были созданы в рамках пользовательского подмодуля программы MCU-TR на основе языка программирования FORTRAN95. Модуль имеет название REC (Registration of Exchange Coefficients).

Проведена проверка алгоритма расчета коэффициентов связи в модуле REC. Для этого были использованы как экспериментальные данные, так и модели активных верификации реакторов водо-водяного типа. При алгоритма 30H расчета коэффициентов связи на моделях активных зон использовалась особенность уравнений многозонной кинетики, позволяющая восстановить значения распределения мощности и плотности потока по подобластям на основе коэффициентов связи в стационарном или подкритическом режиме.

Моделирование стационарных экспериментов с двумя взаимодействующими реакторами показало согласованность изменения экспериментальных и расчетных значений коэффициентов связи в зависимости от расстояния между реакторами.

В результате стационарного расчета усеченной модели активной зоны сопоставление распределенных скоростей генерации нейтронов, полученных в прямом расчете по программе MCU-TR и на основе коэффициентов связи, показало их хорошее согласие. Максимальное отклонение составляет 0,52%.

На примере полномасштабной модели активной зоны КЛТ-40С показана корректность алгоритма вычисления коэффициентов связей для плотности потока нейтронов. Расчет был проведен в подкритическом состоянии с внешним источником. Учитывались переносы мгновенных, запаздывающих нейтронов и нейтронов источника. Отклонения групповых плотностей потоков, вычисленных на основе коэффициентов связи, в ионизационных камерах от плотностей потоков, полученных в прямом расчете по MCU-TR, лежат в пределах расчетной погрешности результатов MCU-TR. Максимальное отклонение составляет 0,25% при погрешности расчета по программе MCU-TR 0,5%.

Комплекс программ MRNK. Для решения уравнений многозонной кинетики (таблица 1) выбран неявный одношаговый (3,2)-метод, входящий в семейство (**m**,**k**)-методов и являющийся модификацией метода Розенброка. Метод имеет третий порядок точности, обладает L-устойчивостью и разработан с учетом автоматического выбора временного шага интегрирования.

Характерной особенностью (**3,2**)-метода является то, что на каждом шаге интегрирования многократно решается система линейных алгебраических уравнений (СЛАУ):

$$\mathbf{D}^n \mathbf{s} = \mathbf{x}$$
.

Здесь $\mathbf{D}^n = \mathbf{E} - a \cdot h^n \cdot \mathbf{J}^n$, \mathbf{E} – единичная матрица; h^n – временной шаг интегрирования, \mathbf{J}^n - матрица Якоби задачи Коши.

Расчетное время решения задачи Коши определяется сложностью решения СЛАУ и зависит от размера матриц **E**, \mathbf{D}^n , \mathbf{J}^n ($N^{yp} \ge N^{yp}$), где N^{yp} - число уравнений задачи Коши. Для системы уравнений многозонной кинетики, с учетом перевода ее в автономный вид, число уравнений определяется формулой:

$$N^{yp} = N^{o\delta_{\pi}} \cdot \left(N^{o\delta_{\pi}} + N^{3an} \cdot N^{o\delta_{\pi}} + N^{3an} + N^{ucm} \right) + N^{2p} \cdot N^{\Phi} \left(N^{o\delta_{\pi}} + N^{o\delta_{\pi}} \cdot N^{3an} + N^{ucm} \right) + 1.$$

Как видно из этой формулы - число уравнений сильно зависит от числа размножающих областей $N^{o \delta n}$. С использованием формы уравнений многозонной кинетики эта СЛАУ может быть преобразована к СЛАУ вида:

$\mathbf{B}^n \mathbf{u} = \mathbf{c}$.

Здесь \mathbf{B}^n - матрица размера N^{obn} х N^{obn} , \mathbf{u} – вектор неизвестных и \mathbf{c} – известный вектор. После решения СЛАУ элементы искомого вектора \mathbf{s} легко определяются через элементы вектора \mathbf{u} на основе представленных в диссертационной работе выражений.

Сложность решения новой СЛАУ зависит только от числа выделенных размножающих областей $N^{oбn}$, что существенно увеличивает быстродействие (3,2)-метода.

Приведенный численный алгоритм решения дифференциальных уравнений реализован в комплексе MRNK (Multi-Region Neutron Kinetics), написанном на языке FORTRAN. Комплекс автоматизирует расчет нейтронной кинетики на основе обменных коэффициентов, полученных из расчета модуля REC, и осуществляет вывод в текстовый файл любых переменных системы уравнений в заданной пользователем временной сетке.

Для проверки корректности реализации оптимизированного (**3,2**)-метода в комплексе MRNK были проведены расчеты изменения мощности по точечной модели кинетики. Результаты расчета четырех примеров ввода реактивности полностью совпали с опубликованными результатами решения уравнений кинетики.

В третьей главе представлены результаты верификации комплекса MRNK. Корректность работы программы подтверждалась на тесте RPCEU235 и серии тестов ВВЭР: ВВЭР-ВН, ВВЭР-ВВ и ВВЭР-КР. Серия тестов была разработана совместно с авторами программы КИР. Также представлены результаты совместных с программой КИР кросс-верификационных расчетов кинетики реактора КЛТ-40С.

Тест RPCEU235. Расчетная область представляет собой помещенный в вакуум прямоугольный параллелепипед, заполненный изотопом 235 U с критической концентрацией 0,044925·10²⁴ яд/см³. По условиям тестовой задачи, в момент времени 10 с вводится положительная реактивность путем мгновенного увеличения концентрации урана до 0,045·10²⁴ яд/см³. После этого концентрация остается постоянной до момента времени 40 с, после которого мгновенно принимает первоначальное значение. Далее процесс рассматривается до 70 с. На рисунке 3 приведены результаты расчета теста по программам Dynamic TRIPOLI, КИР и MRNK. Максимальное расхождение между программами MRNK и КИР не превышает 5%.

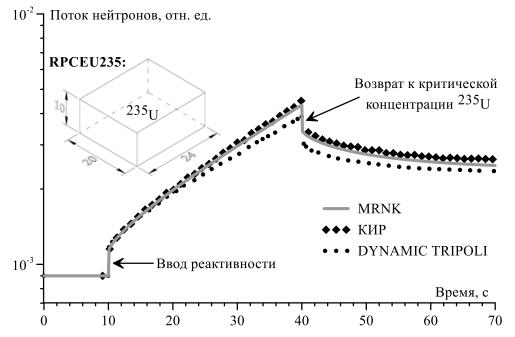


Рисунок 3 – Изменение плотности потока нейтронов, рассчитанное по программам КИР, Dynamic TRIPOLI 4.7 и MRNK

Тестовые задачи ВВЭР-ВН, ВВЭР-ВВ и ВВЭР-КР. Все тестовые задачи имеют одинаковую геометрию расчетной области, которая представляет собой бесконечную в плане решетку твэлов, близкую к критическому состоянию, с размерами, характерными для реактора ВВЭР-1000. Твэлы омываются легководным теплоносителем.

В тесте ВВЭР-ВН моделируется процесс длительностью 8 секунд. В течение первой секунды система находится в критическом состоянии, без содержания бора в воде. После этого в нижнюю половину области, занимаемой водой, мгновенно добавляется В¹⁰, а на 4 секунде, он также мгновенно убирается.

В тесте ВВЭР-ВВ моделируется процесс длительностью 2 секунды. В начальном критическом состоянии в нижнюю область, занимаемой водой, добавлен В¹⁰. Сразу после начала процесса бор мгновенно убирается из воды и в таком состоянии система остается до конца процесса.

В ВВЭР-КР тесте моделируется процесс секунд. длительностью 1000 Начальные условия процесса те же, что для BB₃P-BB. Сразу после теста начала процесса бор мгновенно перемещается из нижней половины области воды в верхнюю половину и в таком состоянии система сохраняется до конца процесса.

На рисунке 4 приведены результаты расчета тестов ВВЭР-ВН, BB₃P-BB И ВВЭР-КР. Для решения задачи по программе MRNK в рамках многозонного приближения топливная область была разбита по высоте на 120 равнообъемных подобластей.

Сопоставление результатов расчетов серии тестов ВВЭР по программам MRNK и КИР показало, что отклонения по интегральной плотности потока нейтронов от программы КИР во всех задачах лежат в пределах 1-6%. Максимальное различие между программами MRNK и CTAPT-UNK в задаче ВВЭР-ВН составило 7%.

Для исследования пространственного изменения характеристик системы для каждого теста по программам MRNK и КИР были получены профили плотности потока нейтронов по высоте в различные моменты времени. Расхождение между программами MRNK и КИР по распределению плотности потока по высоте не превышает 7% в зонах, где формируется максимальная плотность потока.

Кроме этого приведенных В В диссертационной работе результатах расчета тестов по программе MRNK показано, что решении тестовых при задач ПО одноточечному приближению без учета спектра испускания запаздывающих нейтронов появляется сильное отклонение (на порядок в тестах ВВЭР-ВВ и ВВЭР-КР) от результатов расчета в многозонном приближении.

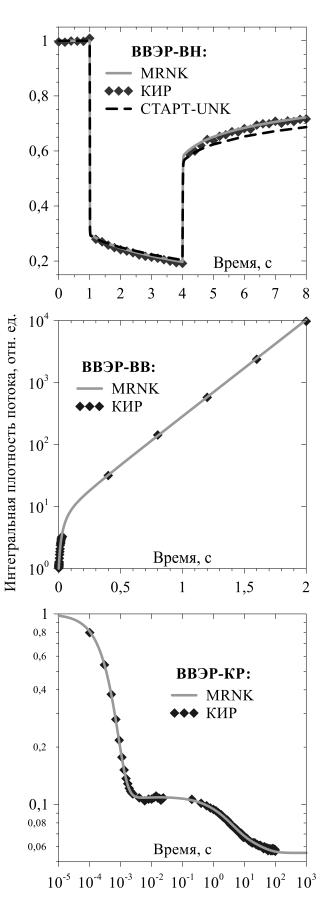
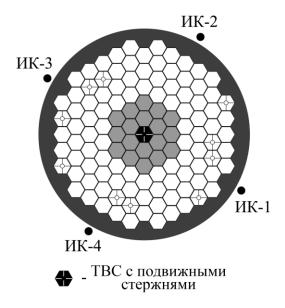
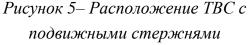


Рисунок 4– Результаты расчета тестов ВВЭР-ВН, ВВЭР-ВВ и ВВЭР-КР


Моделирование кинетики активной зоны реактора КЛТ-40С. Представлены результаты совместного моделирования нейтронной кинетики активной зоны реактора КЛТ-40С водо-водяного типа по программам MRNK и КИР. В расчетах использовалась полномасштабная гетерогенная модель, созданная на базе языка исходных данных программы MCU-TR.


Рассмотрены процессы с перемещением пучка стержней в одном канале, а также с перемещением отдельных групп стержней при условии сохранения критичности. стационарной В расчетах, кроме интегральной мощности энерговыделения, определялись плотности потока тепловых нейтронов В ионизационных камерах, расположенных за пределами активной зоны.

При моделировании процессов нейтронной кинетики КЛТ-40С использовалось одно и то же начальное состояние, определяемое критическим положением стержней регулирования. При этом считается, что в начальном состоянии все стержни установлены на одинаковое положение 50,38 см.

Перемещение стержней в центральной ТВС. Моделируется процесс извлечения пучка стержней в центральной ТВС (рисунок 5) из критического положения со скоростью 34,81 см/сек до верхнего края топливной части и, после двухсекундной паузы, их обратного спуска с той же скоростью до исходного состояния. Общая реактивность, при полном выведении стержней, составляет ~0,07β.

На рисунке 6 приведены результаты расчета процесса по программам MRNK и КИР. Результаты по программе MRNK были получены с выделением 194 подобластей и в одноточечном приближении и практически совпали. Максимальное расхождение результатов расчета мощности по программам MRNK и КИР составляет 2,5%.

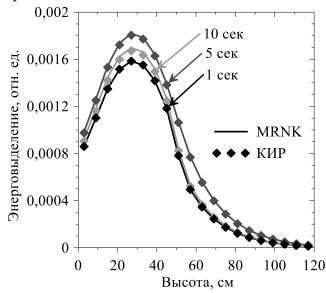



Рисунок 6—Изменение интегральной мощности активной зоны, а также изменение положения пучка поглощающих стержней (ПС) в центральной ТВС

На рисунке 7 представлены расчетные распределения энерговыделения по высоте в центральной ТВС на моменты времени 1, 5 и 10 с. Форма распределения слабо меняется с течением времени, а пик энерговыделения сохраняется в нижней половине.

Изменение энерговыделения в верхнем, двадцатом, аксиальном слое центральной ТВС, рассчитанное по программам MRNK и КИР, представлено на рисунке 8. Ход кривой энерговыделения этом слое качественно отличается от изменения интегральной мощности. Можно отметить согласованность результатов расчета.

Результаты расчета плотности потока тепловых нейтронов в ионизационных камерах ИК-1, ИК-2, ИК-3 и ИК-4 показали, что общий ход кривых изменения плотности потока повторяет изменение интегральной мощности и расхождение результатов расчета по программам MRNK и КИР в течение всего процесса не превышает 2,5%.

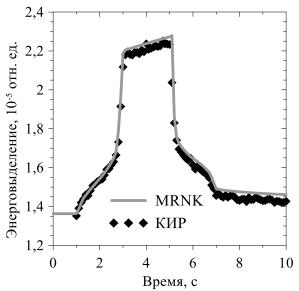


Рисунок 7 – Аксиальные распределения энерговыделения центральной ТВС в разные моменты времени

Рисунок 8 – Результаты расчета изменения энерговыделения в верхнем, двадцатом, слое центральной ТВС

Перемещение групп стержней. Моделируется следующий процесс: с постоянной скоростью 1 см/сек погружаются стержни группы ГР-1 и одновременно извлекаются стержни ГР-3 (рисунок 9). Положение стержней ГР-3 специально подбиралось, чтобы в любой фиксированный момент времени обеспечивалась критичность активной зоны ($K_{3\Phi}=1$). Процесс моделируется до полного извлечения стержней ГР-3. Уровень погружения стержней остальных групп остается неизменным в критическом положении в течение всего процесса. На рисунке 10 приведены результаты расчета по программе MCU-TR движения групп стержней в виде абсолютного отклонения положений стержней ГР-1 и ГР-3 от критического положения.

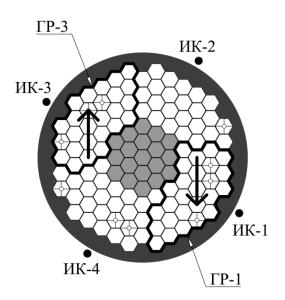


Рисунок 9 – Схема расположения подвижных групп стержней

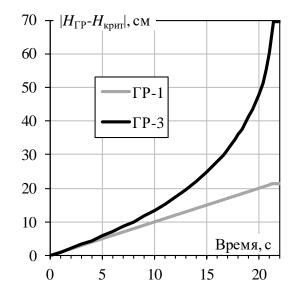


Рисунок 10 – Изменение расстояния между положением (Н_{ГР}) стержней групп ГР-1 и ГР-3 и критическим положением Н_{крит}=50,38

На рисунке 11 приведены результаты расчета мощности по программам КИР и MRNK (329 подобластей). Также на график дополнительно нанесена кривая изменения мощности, полученная из решения уравнений одноточечной кинетики. Флуктуация результатов расчета программ проявляется в силу подробного масштаба графика. Для увеличения точности в данном случае требуется значительные временные затраты.

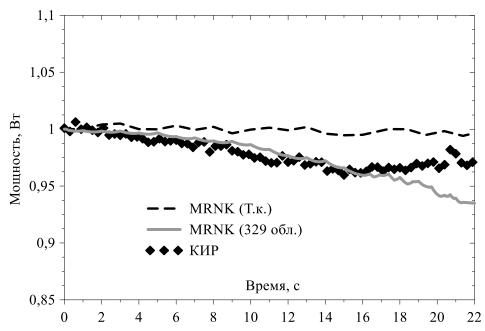


Рисунок 11 – Изменение интегральной мощности, рассчитанное по программам КИР, MRNK - 329 подобластей и по уравнениям точечной кинетики (Т.к.)

Результаты расчета плотности потока тепловых нейтронов в ионизационных камерах приведены на рисунке 12. Расхождение не превышает 4%.

18

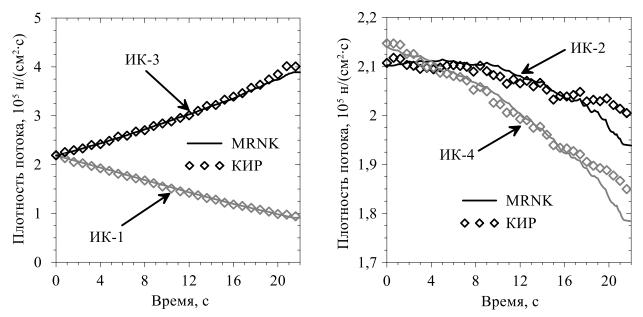


Рисунок 12 – Плотность потока тепловых нейтронов в ионизационных камерах ИК-1, ИК-3 (слева) и ИК-2, ИК-4 (справа)

Дополнительно в работе показано, что временные затраты моделирования процессов по программе КИР для большинства рассмотренных задач превышают на порядок временные затраты на моделирование по программе MRNK

В четвертой главе представлен комплекс программ MRNK+КЕДР-Д, объединяющий комплекс MRNK с разрабатываемым в НИЦ "Курчатовский институт" нестационарным теплогидравлическим кодом КЕРД-Д. Приведены результаты апробации разработанного комплекса на международном численном бенчмарке PWR MOX/UO₂ core transient benchmark.

Комплекс программ MRNK+КЕДР-Д работает на основе программы-оболочки, которая обеспечивает запуск программ MRNK и КЕДР-Д, контроль над расчетом, обмен данными, генерацию вариантов программы MCU-TR, проверку сходимости параметров, обработку результатов и т.д. Оболочка написана на языке FORTRAN и оптимизирована для работы на суперкомпьютере НИЦ "Курчатовский институт".

В оболочке используется итерационная схема объединения программ. Хотя в практике часто используются явные схемы, выбор итерационной схемы был обусловлен точностью получаемых результатов и более сильной устойчивостью алгоритма к шагу по времени по сравнению с безытерационными схемами.

Численный бенчмарк PWR MOX/UO2. Активная зона состоит из 193 бесчехловых квадратных TBC, типа PWR. В 54 ТВС применяется MOX-топливо, а в остальных установлено уран-диоксидное топливо. Во всех ТВС топливо считается выгоревшим, всего введено семь уровней глубины выгорания.

По данным бенчмарка была создана полномасштабная гетерогенная модель активной зоны на языке исходных данных MCU-TR. В первую очередь для подтверждения корректности созданной модели проводились расчеты стационарных состояний.

19

Расчеты на К_{эф}. По программе MCU-TR проведен расчет К_{эф} для двух состояний активной зоны: все стержни подняты и все стержни введены. Результаты расчета хорошо согласуются с результатами расчета как по нодальным, так и по гетерогенным программам. Отклонение по $K_{эф}$ не превышает 0,4%.

Расчет начального состояния для нестационарного процесса. Проведено сопоставление результата подбора критической концентрации бора в воде с результатами других программ для начального критического состояния, из которого в нестационарной задаче будет моделироваться аварийное извлечение стержня. Максимальное отклонение по значению концентрации составило ~ 8%.

Расчет нестационарного процесса. Моделируется аварийный процесс – полное извлечение связки стержней регулирования в одной из ТВС с постоянной скоростью в течение 0,1 с. После этого стержни остаются неподвижными до конца процесса (полное время процесса – 1 с.). Начальная тепловая мощность активной зоны – 0,0001% от номинальной 3565 МВт.

Извлечение связки стержней дает сильный рост надкритичности системы, что приводит к быстрому разгону мощности на мгновенных нейтронах. За счет отрицательных обратных связей по теплофизическим свойствам системы, в основном из-за нагрева топлива, в течение короткого времени формируется пик, после которого мощность спадает на новый уровень.

Результаты расчета мощности по комплексу MRNK+КЕДР-Д представлены на рисунке 13. На том же графике приведены данные расчета по комплексам BARS, NUREC, SKETCH-INS, CORETRAN и PARCS. Эти комплексы использовали собственные теплофизические модули, описанные в спецификации бенчмарка.

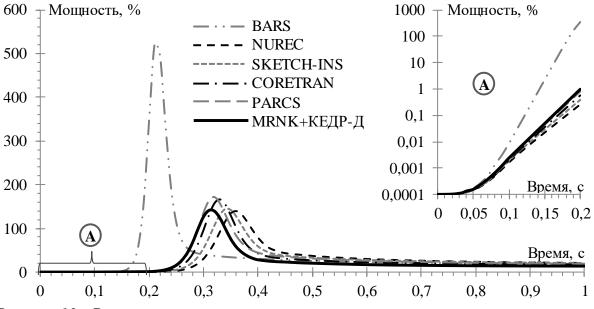
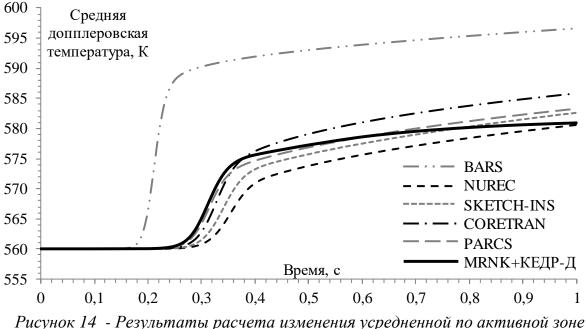



Рисунок 13 - Результаты расчета изменения тепловой мощности активной зоны

Как видно из результатов кривая изменения мощности, рассчитанная по комплексу MRNK+КЕДР-Д, согласуется с результатами расчета нодальных программ. До начала влияния обратных связей по нагреву топлива результаты практически совпадают с комплексом PARCS.

Результаты изменения усредненной по активной зоне допплеровской температуры топлива, рассчитанные по тем же комплексам, представлены на рисунке 14. Подогрев топлива за счет роста мощности приводит к снижению скорости роста энерговыделения, и после достижения пика, к его падению. Результаты расчета подогрева топлива, также как и для мощности, наилучшим образом согласуются с комплексом PARCS.

допплеровской температуры топлива

Характеристики процесса изменения мощности (момент достижения пика и пиковая мощность), полученные по нодальным программам и по комплексу MRNK+КЕДР-Д сведены в таблице 2. Как видно из приведенных данных время достижения пика и его мощность несущественно отклоняются от других программ. Максимальное отклонение по мощности в пике составляет 18% от программы PARCS, а по времени достижения пика - 14% от программы NUREC.

Программы	Момент достижения пика, с	Пиковая мощность, %
CORETRAN	0,33	166
NUREC	0,36	139
PARCS	0,32	172
SKETCH-INS	0,34	144
MRNK	0,31	141

Таблица 2 – Сопоставление времени пика и пиковой мощности

Кроме результатов расчета интегральных величин приведены результаты расчета распределения нормированного энерговыделения по ТВС активной зоны и

отклонения этой величины в каждой TBC от результатов программы PARCS. Основное расхождение проявляется в конце процесса в группах TBC с наименьшим энерговыделением, максимальное отклонение составляет 12,59%. Однако взвешенное по мощности отклонение $\delta_{PWE} = 3,3\%$, показывает, что в областях с наибольшим энерговыделением отклонение незначительно.

Исходя из сравнения с опорными данными, можно заключить, что, в целом, результаты удовлетворительно согласуются с результатами расчета по программам, использующим нодальные методы.

В заключении диссертации приведены основные результаты работы.

Работа была выполнена с использованием оборудования центра коллективного пользования «Комплекс моделирования и обработки данных исследовательских установок мега-класса» НИЦ «Курчатовский институт» (субсидия Минобрнауки, идентификатор работ RFMEFI62117X0016), <u>http://ckp.nrcki.ru/</u>.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

Основными результатами работы и положениями, выносимыми на защиту, являются:

1. Предложена расширенная математическая модель многозонной кинетики с возможностями вычисления групповой плотности потока нейтронов в выделенных областях системы и учета обратных связей по теплофизическим свойствам материалов.

2. Для решения уравнений многозонной кинетики разработана двухэтапная методика, в которой обменные коэффициенты для всех типов рожденных нейтронов, в том числе и запаздывающих нейтронов, вычисляются на основе метода Монте-Карло с применением современной многопроцессорной вычислительной техники, а численное решение дифференциальных уравнений проводится с использованием быстродействующего адаптированного неявного (3,2) метода.

3. На основе разработанных алгоритмов и численных схем созданы комплексы программ расчета нейтронно-физических процессов MRNK и расчета динамических процессов MRNK+КЕДР-Д. Комплексы были верифицированы применительно к активным зонам реакторов водо-водяного типа на основе результатов решения тестовых и модельных задач нейтронной кинетики, а также расчета динамического процесса международного бенчмарк-теста PWR MOX/UO2 core transient benchmark.

4. Продемонстрирована эффективность использования модели многозонной кинетики для решения представленных в работе задач, связанных с моделированием нейтронной кинетики, в частности, показана возможность получения высокой точности результатов, сопоставимой с точностью прямого моделирования методом Монте-Карло, но с использованием меньших вычислительных ресурсов.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Основное содержание диссертационной работы и ее результатов отражено в 7 научных работах:

1. *Иоаннисиан М.В.* Расчет коэффициентов связи для уравнений многоточечной кинетики // ВАНТ. Сер. Физика ядерных реакторов, 2012, вып. 1. Стр 27-33.

2. *Иоаннисиан М.В.*, *Давиденко В.Д*. Расчетное моделирование кинетических процессов с использованием метода Монте-Карло // Вопросы атомной науки и техники. Сер. Ядерно-реакторные константы, вып. 1, 2018, стр. 47-56.

3. *Давиденко В.Д., Иоаннисиан М.В.* Тестовые задачи для верификации нестационарных программных комплексов // Вопросы атомной науки и техники. Сер. Ядерно-реакторные константы, вып. 1, 2018, стр. 137-149.

4. *Иоаннисиан М.В.* Определение потока нейтронов на основе метода многоточечной кинетики // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов, 2018, вып. 1, с. 10–23.

5. *Иоаннисиан М.В., Гомин Е.А., Давиденко В.Д.* Моделирование нейтронной кинетики активной зоны реактора КЛТ-40С с применением метода Монте-Карло // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов, 2018, вып. 1, с. 24–35.

6. Гольцев А.О., Гомин Е.А., Давиденко В.Д., Зинченко А.С., Иоаннисиан М.В., Ковалишин А.А. Тестовая задача ВВЭР-ВН для верификации нестационарных программных комплексов // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов, 2018, вып. 1, с. 36–42.

7. **Иоаннисиан М.В.,** *Быков* В.П., Закиров С.Ю., Дьячков И.И. Верификация метода многозонной кинетики на примере численного бенчмарк-теста // Атомная энергия, 2019, том 126, номер 2, с. 116-119.