ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ ИМ. М.В. КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК

Утверждена	
Ученым советом ФИЦ ИПМ	
им. М.В. Келдыша РАН,	
протокол № от «»	2018_
Γ.	
Заместитель директора	
А.Л.	Афендиков
(подпись, расшифровка подпис	еи)
«»2018 г.	

РАБОЧАЯ ПРОГРАММА

УЧЕБНОЙ ДИСЦИПЛИНЫ

Математический и функциональный анализ

Направление подготовки

Профили (направленности программы)

01.01.03- «Математическая физика»

Квалификация выпускника

Исследователь. Преподаватель-исследователь

Форма обучения

очная

Москва, 2018

Профиль (направленность программы): 01.01.03 – «Математичекая физика»
Дисциплина: Математический и функциональный анализ.
Форма обучения: очная
Рабочая программа составлена с учетом ФГОС ВО по направлению подготовки 01.06.01 — «Математика и Механика», утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 866, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33837, и Программы-минимум кандидатского экзамена по специальности, утвержденной приказом Министерства образования и науки Российской Федерации от 8 октября 2007 года № 274 (зарегистрировано Минюстом Российской Федерации 19 октября 2007 года № 10363).
РАБОЧАЯ ПРОГРАММА РЕКОМЕНДОВАНА Ученым советом ФИЦ ИПМ им. М.В. Келдыша РАН, протокол № от «» 2018 г. Заместитель директора А.Л. Афендиков.
ИСПОЛНИТЕЛЬ (разработчик программ): Веденяпин В.В., ведущий научный сотрудник ИПМ им. М.В.Келдыша РАН
Заведующий аспирантурой/ Меньшов И.С. /

Направление подготовки: 01.06.01 — математика и механика

Оглавление

Αl		4
	ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
	ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
	СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	
	3.1. Структура дисциплины	
	3.2. Содержание разделов дисциплины	
	3.3. Семинарские занятия	7
4.	ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	7
5.	УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	.10
6.	МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	.10

АННОТАЦИЯ

Дисциплина «Математический и функциональный анализ» реализуется в рамках Блока 1 Основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре Федерального исследовательского центра Института прикладной математики им. М.В. Келдыша РАН (ИПМ им. М.В. Келдыша РАН) по направлению подготовки 01.06.01 — математика и механика».

Рабочая программа разработана с учетом требований ФГОС ВО по направлению подготовки 01.06.01 — математика и механика», утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 866, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33837, и Программы-минимум кандидатского экзамена по специальности, утвержденной приказом Министерства образования и науки Российской Федерации от 8 октября 2007 года № 274 (зарегистрировано Минюстом Российской Федерации 19 октября 2007 года № 10363).

Основным источником материалов для формирования содержания программы являются: материалы конференций, симпозиумов, семинаров, Интернет-ресурсы, научные издания и монографические исследования и публикации.

Общая трудоемкость дисциплины по учебному плану составляет 2 зач.ед. (72 часа), из них лекций -4 часа, семинарских занятий -10 часов, практических занятий -0 часов и самостоятельной работы -58 часа. Дисциплина реализуется на 1-м курсе, в 1-м семестре, продолжительность обучения -1 семестр.

Текущая аттестация проводится не менее 2 раз в соответствии с заданиями и формами контроля, пердусмотренные настоящей программой.

Промежуточная оценка знания осуществляется в период зачетно-экзаменационнной сессии в форме зачета.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели и задачи дисциплины «Математический и функциональный анализ»

Цель: освоение фундаментальных знаний и компетенций, которые позволят представлять и разрабатывать методами дифференциальных уравнений модели физико-химических процессов и их дискретные модели в удобном виде, а также владеть математическим аппаратом, позволяющим выбрать наиболее правильную модель, аналитически исследовать и оценивать её свойства.

Залачи:

- освоить основновы математического и функционального анализа;
- практическое освоение накопленных по дисциплине знаний при использовании математического и функционального анализа;
 - стимулирование к самостоятельной деятельности по освоению дисциплины.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Математический и функциональный анализ» направлен на формирование компетенций или отдельных их элементов в соответствии с ФГОС ВО по направлению подготовки 01.06.01 — математика и механика, утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 875, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33685

а) универсальные (УК): не предусмотрено

- **б) общепрофессиональных (ОПК):** Владение методологией теоретических и экспериментальных исследований в области профессиональной деятельности (ОПК-1)
- **в) профессиональных** (ПК): Способность использовать математический и функциональный анализ в исследованиях(ПК-1), Способность создавать модели химических и физических процессов с помощью математического и функционального анализа (ПК-2), Способность исследовать или качественно описывать поведение систем с помощью математического и функционального анализа (ПК-3).

В результате освоения дисциплины обучающийся должен:

Знать:

- основные понятия математического и функционального анализа
- основные методы использования математического и функционального анализа.
- основные математические методы качественного исследования модели химических и физических процессов с помощью математического и функционального анализа.

Уметь:

- использовать основные понятия математического и функционального анализа
- уверенно проводить качественную оценку поведения химических и физических процессов с помощью математического и функционального анализа.

Владеть:

- навыками математического и функционального анализа
- основными понятиями математического и функционального анализа.
- навыками исследования основных свойств моделей физико-химической теории с помощью математического и функционального анализа.

Приобрести опыт:

- построения моделей физико-химических процессов с помощью математического и функционального анализа;
- исследования поведения физико-химических процессов с помощью математического и функционального анализа

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Структура дисциплины

Распределение трудоемкости дисциплины по видам учебных работ

		Трудоемкость	
Вид учебной работы	общая		
		час.	
ОБЩАЯ ТРУДОЕМКОСТЬ по Учебному плану	2	72	
Лекции (Л)		4	
Практические занятия (ПЗ)	1	-	
Семинары (С)		10	
Самоподготовка (проработка и повторение лекционного материала и материала			
учебников и учебных пособий, подготовка к семинарским и практическим занятиям)		58	
и самостоятельное изучение тем дисциплины			
Вид контроля: зачет			

3.2. Содержание разделов дисциплины

Общее содержание дисциплины

Оощее содержание дисциплины				
№	Наименование	Содержание раздела	Форма текущей	
раздела	раздела	• •	аттестации	
1.	Теория меры	Мера и измеримые функции. Интеграл Лебега и его сравнение с интегралом Римана. Теорема Егорова. Теорема Фубини. Теоремы Лебега, Леви, Фату о предельном переходе под знаком интеграла.	О, ДЗ	
2.	Преобразование Фурье.	Пространства <i>Lp</i> . Разложения по ортогональным системам функций в <i>L</i> 2. Ряды и преобразования Фурье. Теорема Планшереля.	О, ДЗ	
3.	Непрерывные функции. Гильбертовы пространства	Метрические и топологические пространства. Компактность. Непрерывные функции на компакте. Теорема Стоуна-Вейерштрасса. Связность. Линейные топологические и банаховы пространства. Теорема Хана-Банаха. Компактные операторы. Гильбертовы пространства. Теорема Рисса-Фишера о представлении линейных функционалов.	О, ДЗ	
4.	Линейные операторы.	Линейные операторы в гильбертовом пространстве. Ограниченные операторы. Понятие о спектре оператора. Спектр компактного самосопряженного оператора. Спектральное представление линейного оператора. Линейные операторы и их матрицы в конечномерном вещественном и комплексном пространстве. Нормальная форма матрицы линейного оператора. Канонический вид матрицы симметрического, унитарного и кососимметрического оператора.	О, ДЗ	
5.	Обобщённые функции.	Обобщенные функции и операции над ними. Преобразование Фурье обобщенных функций медленного роста. Соболевские пространства Hs. Теорема вложения Соболева.	О, ДЗ	

Примечание: О – опрос, Д – дискуссия (диспут, круглый стол, мозговой штурм, ролевая игра), Д3 – домашнее задание (эссе и пр.). Формы контроля не являются жесткими и могут быть заменены преподавателем на другую форму контроля в зависимости от контингента обучающихся. Кроме того, на занятиях семинарских может проводится работа с нормативными документами, изданиями средств информации и прочее, что также оценивается преподавателем.

3.3. Лекционные занятия

№ занятия	№ Раздела	Краткое содержание темы занятия	Кол-во часов
1.	1,2,3	Мера и измеримые функции. Интеграл Лебега и его сравнение с интегралом Римана. Теорема Егорова. Теорема Фубини. Метрические и топологические пространства. Компактность. Непрерывные функции на компакте. Теорема Стоуна-Вейерштрасса. Связность. Линейные топологические и банаховы пространства. Теорема Хана-Банаха. Компактные операторы. Гильбертовы пространства. Теорема Рисса-Фишера о представлении линейных функционалов.	2

2.	4,5	Линейные операторы в гильбертовом пространстве. Ограниченные операторы. Понятие о спектре оператора. Спектр компактного самосопряженного оператора. Спектральное представление линейного оператора. Линейные операторы и их матрицы в конечномерном вещественном и комплексном пространстве. Нормальная форма матрицы линейного оператора. Канонический вид матрицы симметрического, унитарного и кососимметрического оператора. Обобщенные функции и операции над ними.	2
	ВСЕГО		4

3.4. Семинарские занятия

№ занятия	№ Раздела (темы)	Краткое содержание темы занятия	Кол-во часов
3.	1	Задачи на тему Теорема Егорова. Теорема Фубини. Теоремы Лебега, Леви, Фату о предельном переходе под знаком интеграла. Эргодические теоремы.	2
4.	2	Задачи по темам: Пространства Lp . Разложения по ортогональным системам функций в L 2. Ряды и преобразования Фурье. Теорема Планшереля. Теорема Хана-Банаха. Компактные операторы.	2
5.	3	Гильбертовы пространства. Теорема Рисса-Фишера о представлении линейных функционалов.Эргодические теоремы фон Неймана и Рисса.	2
6.	4	Задачи по темам: Линейные операторы и их матрицы в конечномерном вещественном и комплексном пространстве. Нормальная форма матрицы линейного оператора. Канонический вид матрицы симметрического, унитарного и кососимметрического оператора. Эргодические свойства линейных операторов.	2
7.	5	Задачи по темам: Обобщенные функции и операции над ними. Преобразование Фурье обобщенных функций медленного роста. Соболевские пространства Hs. Теорема вложения Соболева. Эргодическая теория и обобщённые функции.	2
	ВСЕГО		10

4. ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Текущая аттестация аспирантов. Текущая аттестация аспирантов проводится в соответствии с локальным актом ФИЦ ИПМ им. М.В. Келдыша РАН - Положением о текущей, промежуточной и итоговой аттестации аспирантов ФИЦ ИПМ им. М.В. Келдыша РАН по программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Текущая аттестация по дисциплине проводится в форме опроса, а также оценки вопросаответа в рамках участия обучающихся в дискуссиях и различных контрольных мероприятиях по оцениванию фактических результатов обучения, осуществляемых преподавателем, ведущим дисциплину. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины см. ниже.

Объектами оценивания выступают:

– учебная дисциплина – активность на занятиях, своевременность выполнения различных видов заданий, посещаемость занятий;

– степень усвоения теоретических знаний и уровень овладения практическими умениями и навыками по всем видам учебной работы, проводимых в рамках семинаров, практических занятий и самостоятельной работы.

Оценивание обучающегося на занятиях осуществляется с использованием нормативных оценок зачет, незачет.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Форма контроля знаний	Вид аттестации	Примечание
проверочные работы в течение	текущая	Ниже приведены перечени
всего курса		рекомендуемых задач и контрольных
		вопросов
зачет	итоговая	

Примерный перечень рекомендуемых контрольных вопросов для оценки текущего уровня успеваемости студента:

- 1. Нарисовать фазовый портрет уравнения двумерной системы дифф. уравнения и дать описание поведения уравнения Лиувилля в пространстве *L* 2.
- 2. Нарисовать фазовый портрет одномерной гамильтоновой системы, решить её и дать описание поведения уравнения Лиувилля в пространстве L 2.
- 3. Рост энтропии для уравнения Ливилля, энтропия по Пуанкаре в пространстве L 2.
- 4. Экстремаль Больцмана и эргодические теоремы Фон-Неймана и Рисса в пространстве L 2 и обобщённых функциях.
- 5. Дискретное время для уравнения Лиувилля. Теорема Рисса в пространстве L 2 и обобщённых функциях .
- 6. Непрывное время. Теорема фон Неймана в пространстве L 2 и Боголюбова в обобщённых функциях .
- 7. Функционалы Ляпунова и H-теорема в пространстве L 2 и обобщённых функциях.

Примерный перечень рекомендуемых контрольных задач для оценки текущего уровня успеваемости студента:

Задача № 1.

Для системы уравнений одномерного движения

- 1. Построить фазовый портрет.
- 2. Найти законы сохранения в различных пространствах функций.
- 3. Уточнить поведение фазовых траекторий в окрестности особых точек для уравнения Лиувилля в различных пространствах функций.
- 4. Выписать уравнение Лиувилля для этой динамической системы и приближение гидродинамического типа. Оценить, к чему стремятся решения в различных функциональных пространствах.

Для заданного студенту значения $\alpha, \overline{\beta, \gamma, \delta} \in \mathbb{N}$:

Описать движение материальной точки с потенциальной энергией $U(x) = x^{2\beta}(x-3)^{\alpha}(x-5)^{\alpha+1}$.

1. Выписать соответствующую динамическую систему. Найти законы сохранения в разлтчных пространствах функций.

- 2. Построить фазовый портрет. Сколько различных фазовых траекторий соответствуют уровню энергии E=0 ?
- 3.Уточнить поведение фазовых траекторий в окрестности особых точек для уравнения Лиувилля в различных пространствах функций.

. 4. Выписать уравнение Лиувилля для этой динамической системы и приближение гидродинамического типа. Дать анализ в различных пространствах функций.

Задача № 3.

- 1. Выписать систему, описывающую колебательный процесс.
- 2. Выписать законы сохранения. Выписать *H*-функции для уравнения Лиувилля. К чему стремится решение при времени, стремящемся к бесконечности в различных пространствах функций?
- 3. Выписать уравнение Лиувилля для этой динамической системы и приближение гидродинамического типа, дать анализ в различных пространствах функций.

Итоговая аттестация аспирантов. Итоговая аттестация аспирантов по дисциплине проводится проводится в соответствии с локальным актом ФИЦ ИПМ им. М.В. Келдыша РАН – Положением о текущей, промежуточной и итоговой аттестации аспирантов ФИЦ ИПМ им. М.В. Келдыша РАН по программам высшего образования – программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Итоговая аттестация по дисциплине осуществляется в форме зачета в период зачетноэкзаменационной сессии в соответствии с Графиком учебного процесса по приказу (распоряжению заместителю директора по научной работе). Обучающийся допускается к зачету в случае выполнения аспирантом всех учебных заданий и мероприятий, предусмотренных настоящей программой. В случае наличия учебной задолженности (пропущенных занятий и (или) невыполненных заданий) аспирант отрабатывает пропущенные занятия и выполняет задания.

Оценивание обучающегося на промежуточной аттестации осуществляется с использованием нормативных оценок на зачете – зачет, незачет.

Оценивание аспиранта на промежуточной аттестации в форме экзамена

Оценка	Требования к знаниям и критерии выставления оценок			
Незачет	основное содержание учебного материала не раскрыто; допущены грубые ошибка в определении понятий и при использовании терминологии; не даны ответы на дополнительные вопросы.			
не даны ответы на дополнительные вопросы. раскрыто содержание материала, даны корректные опред понятий; допускаются незначительные нарушения последовател изложения; допускаются небольшие неточности при использовании термин в логических выводах;				

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Владимиров В.С., Жаринов В.В. Уравнения математической физики., М., Наука, 2000.
- 2. Рисс Ф., Сёкефальви-Надь Б. Лекции по функциональному анализу. М.: Мир, 1979.

Дополнительная литература и Интернет-ресурсы

- 1. Гельфанд И. М., Шилов Г. Е. Обобщенные функции. Вып. 1-3. М.: Физматгиз. 1958
- 2. Гельфанд И. М., Виленкин Н. Я.. Обобщенные функции. Вып. 4.— М.: Физматгиз. 1958.
- 3. Арнольд В.И. Математические методы классической механики.
- 4. Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. М., 2002.
- 5. Зельдович Я.Б., Мышкис А.Д., Элементы прикладной математики. М., Наука, 1967.
- 6. Пуанкаре А. Замечания о кинетической теории газов. // Пуанкаре А. Избранные труды, М., Наука, 1974.
- 7. Веденяпин В.В. Кинетичекие уравнения Больцмана и Власова., М., Физматлит, 2001.
- 8. Немыцкий В.В., Степанов В.В. Качественная теория дифференциальных уравнений. М.-Л.: ОГИЗ. 1947.
- 9. Зельдович Я.Б., Мышкинс А.Д. Элементы математической физики. М.: Глав- ная редакция физико-математической литературы изд-ва «Наука». 1973.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения интерактивных методов обучения для чтения лекций требуется аудитория с мультимедиа (возможен вариант с интерактивной доской).

Для проведения дискуссий и круглых столов, возможно, использование аудиторий со специальным расположением столов и стульев.

ИСПОЛНИТЕЛИ (разработчики программы):

Веденяпин В.В., ИПМ им. М.В. Келдыша РАН, ведущий научный сотрудник, д.ф.-м.н. Орлов Ю.Н., ИПМ им. М.В.Келдыша РАН, зав сектором, д.ф.-м.н.